Updating search results...

Search Resources

321 Results

View
Selected filters:
  • Life Science
Biofundamentals 2.0
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Our goal is to present the key observations and unifying concepts upon which modern biology is based; it is not a survey of all biology! Once understood, these foundational observations and concepts should enable you to approach any biological process, from disease to kindness, from a scientific perspective. To understand biological systems we need to consider them from two complementary perspectives; how they came to be (the historic, that is, evolutionary) and how their structures, traits, and behaviors are produced (the mechanistic, that is, the physicochemical)

Subject:
Biology
Life Science
Material Type:
Textbook
Provider:
University of Colorado Boulder
Provider Set:
Virtual Laboratories
Author:
Melanie M. Cooper
Michael W. Klymkowski
Date Added:
06/27/2016
Biological Computing: At the Crossroads of Engineering and Science, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Imagine you are a salesman needing to visit 100 cities connected by a set of roads. Can you do it while stopping in each city only once? Even a supercomputer working at 1 trillion operations per second would take longer than the age of the universe to find a solution when considering each possibility in turn. In 1994, Leonard Adleman published a paper in which he described a solution, using the tools of molecular biology, for a smaller 7-city example of this problem. His paper generated enormous scientific and public interest, and kick-started the field of Biological Computing, the main subject of this discussion based seminar course. Students will analyze the Adleman paper, and the papers that preceded and followed it, with an eye for identifying the engineering and scientific aspects of each paper, emphasizing the interplay of these two approaches in the field of Biological Computing. This course is appropriate for both biology and non-biology majors. Care will be taken to fill in any knowledge gaps for both scientists and engineers.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Khodor, Julia
Date Added:
01/01/2005
Biological Engineering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This page, presented by MIT and made available online via the university's Open Courseware site, presents a series of materials on biological engineering. Topics include introduction to biological engineering design, systems microbiology, computation for biological engineers and molecular principles of biomaterials. Materials are at both the undergraduate and graduate school levels. OpenCourseWare is free educational material online. Video lectures, assignments and exams are included. No registration or enrollment is required to use the materials.

Subject:
Biology
Engineering
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
05/13/2011
Biological Engineering Design, Spring 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course illustrates how knowledge and principles of biology, biochemistry, and engineering are integrated to create new products for societal benefit. It uses a case study format to examine recently developed products of pharmaceutical and biotechnology industries: how a product evolves from initial idea, through patents, testing, evaluation, production, and marketing. Emphasizes scientific and engineering principles; the responsibility scientists, engineers, and business executives have for the consequences of their technology; and instruction and practice in written and oral communication. The topic focus of this class will vary from year to year. This version looks at inflammation underlying many diseases, specifically its role in cancer, diabetes, and cardiovascular disease.

Subject:
Biology
Chemistry
Life Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Banuazizi, Atissa
Breindel, Harlan
Essigmann, John
Irvine, Darrell
Poe, Mya
White, Forest
Date Added:
01/01/2010
Biological Engineering II: Instrumentation and Measurement, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms of genetic, biochemical, and biophysical properties. Methods include light and fluorescence microscopies; electro-mechanical probes such as atomic force microscopy, laser and magnetic traps, and MEMS devices; and the application of statistics, probability and noise analysis to experimental data.

Subject:
Biology
Electronic Technology
Life Science
Mathematics
Professional Studies
Statistics and Probability
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
So, Peter
Date Added:
01/01/2006
Biological Engineering Programming, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course problems from biological engineering are used to develop structured computer programming skills and explore the theory and practice of complex systems design and construction.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Endy, Andrew
Date Added:
01/01/2006
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed to cover the scope and sequence requirements of a typical two-semester biology course for science majors. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology includes rich features that engage students in scientific inquiry, highlight careers in the biological sciences, and offer everyday applications. The book also includes clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
Connie Rye
Jean DeSaix
Jung Choi
Robert Wise
Vladimir Jurukovski
Date Added:
08/22/2012
Biology 101A Lab Packet
Unrestricted Use
CC BY
Rating
0.0 stars

Lab Manual for BIO101 at Mt Hood Community College. The associated textbook is available at https://openoregon.pressbooks.pub/mhccbiology101/

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
OpenOregon
Author:
Christine Anderson
Lisa Bartee
Date Added:
05/22/2019
Biology: Genetics
Read the Fine Print
Educational Use
Rating
0.0 stars

College-level course focusing on the principles of genetics. Course topics include structure and function of genes, chromosomes and genomes, biological variation, population genetics, use of genetic methods to analyze protein function, gene regulation, and inherited disease. Course features include lecture notes, assignments and solutions, and exams and solutions.

Subject:
Applied Science
Biology
Genetics
Life Science
Material Type:
Activity/Lab
Assessment
Diagram/Illustration
Full Course
Homework/Assignment
Lecture Notes
Student Guide
Syllabus
Provider:
Massachusetts Institute of Technology
Provider Set:
OpenCourseWare
Author:
Fink, Gerald
Kaiser, Chris
Mischke, Michelle
Samson, Leona
Date Added:
01/01/2004
Biology I
Read the Fine Print
Rating
0.0 stars

An introduction to biology intended for non-science majors.  Focus areas include chemical foundations, cell structure and division, genetics, and evolution.

Subject:
Biology
Life Science
Material Type:
Full Course
Textbook
Provider:
Lumen Learning
Provider Set:
Candela Courseware
Author:
David Fernandez
Leslie Orzetti
Paula Rodgers
Date Added:
05/22/2019
Biology I Course Content
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

The Biology I Course was developed through the Ohio Department of Higher Education OER Innovation Grant. The course is part of the Ohio Transfer Assurance Guides and is also named OSC003. This work was completed and the course was posted in October 2019. For more information about credit transfer between Ohio colleges and universities, please visit: www.ohiohighered.org/transfer.Team LeadCathy Sistilli                                         Eastern Gateway Community CollegeContent ContributorsLisa Aschemeier                                 Northwest State Community CollegeShaun Blevins                                     Rhodes State CollegeRachel Detraz                                     Edison State Community College                                     Sara Finch                                          Sinclair Community CollegeWendy Gagliano                                 Clark State Community College AJ Snow                                             University of Akron Wayne CollegeLibrarianAmanda Rinehart                               Ohio State UniversityReview TeamJessica Hall                                        Ohio Dominican UniversitySanhita Gupta                                    Kent State UniversityErica Mersfelder                                 Sinclair Community College

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Ohio Open Ed Collaborative
Date Added:
05/11/2021