The Linear Algebra course was developed through the Ohio Department of Higher …
The Linear Algebra course was developed through the Ohio Department of Higher Education OER Innovation Grant. This work was completed and the course was posted in November 2018. The course is part of the Ohio Transfer Module and is also named OMT019. For more information about credit transfer between Ohio colleges and universities, please visit: www.ohiohighered.org/transfer.Team LeadAnna Davis Ohio Dominican UniversityContent ContributorsPaul Bender Ohio Dominican UniversityRosemarie Emanuele Ursuline CollegePaul Zachlin Lakeland Community CollegeLibrarianDaniel Dotson Ohio State University Review TeamJim Fowler Ohio State UniversityJim Cottrill Ohio Dominican University
We establish that a plane is determined by a point and a …
We establish that a plane is determined by a point and a normal vector, and use this information to derive a general equation for planes in R^3.https://ximera.osu.edu/la/LinearAlgebra/RRN-M-0030/main
We introduce standard unit vectors in R^2, R^3 and R^n, and express …
We introduce standard unit vectors in R^2, R^3 and R^n, and express a given vector as a linear combination of standard unit vectors.https://ximera.osu.edu/la/LinearAlgebra/VEC-M-0035/main
We state and prove the cosine formula for the dot product of …
We state and prove the cosine formula for the dot product of two vectors, and show that two vectors are orthogonal if and only if their dot product is zero.https://ximera.osu.edu/la/LinearAlgebra/VEC-M-0060/main
We find the projection of a vector onto a given non-zero vector, …
We find the projection of a vector onto a given non-zero vector, and find the distance between a point and a line.https://ximera.osu.edu/la/LinearAlgebra/VEC-M-0070/main
We define the determinant of a square matrix in terms of cofactor …
We define the determinant of a square matrix in terms of cofactor expansion along the first row.https://ximera.osu.edu/la/LinearAlgebra/DET-M-0010/main
We define the determinant of a square matrix in terms of cofactor …
We define the determinant of a square matrix in terms of cofactor expansion along the first column, and show that this definition is equivalent to the definition in terms of cofactor expansion along the first row.https://ximera.osu.edu/la/LinearAlgebra/DET-M-0020/main
We examine the effect of elementary row operations on the determinant and …
We examine the effect of elementary row operations on the determinant and use row reduction algorithm to compute the determinant.https://ximera.osu.edu/la/LinearAlgebra/DET-M-0030/main
We explore the theory behind finding the eigenvalues and associated eigenvectors of …
We explore the theory behind finding the eigenvalues and associated eigenvectors of a square matrix.https://ximera.osu.edu/la/LinearAlgebra/EIG-M-0020/main
In this module we discuss algebraic multiplicity, geometric multiplicity, and their relationship …
In this module we discuss algebraic multiplicity, geometric multiplicity, and their relationship to diagonalizability.https://ximera.osu.edu/la/LinearAlgebra/EIG-M-0050/main
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.