This free online textbook is a one semester course in basic analysis. …
This free online textbook is a one semester course in basic analysis. These were my lecture notes for teaching Math 444 at the University of Illinois at Urbana-Champaign (UIUC) in fall 2009. The course is a first course in mathematical analysis aimed at students who do not necessarily wish to continue a graduate study in mathematics. A Sample Darboux sums prerequisite for the course is a basic proof course. The course does not cover topics such as metric spaces, which a more advanced course would. It should be possible to use these notes for a beginning of a more advanced course, but further material should be added.
The Calculus II course was developed through the Ohio Department of Higher …
The Calculus II course was developed through the Ohio Department of Higher Education OER Innovation Grant. This work was completed and the course was posted in February 2019. The course is part of the Ohio Transfer Module and is also named TMM006. For more information about credit transfer between Ohio colleges and universities, please visit: www.ohiohighered.org/transfer.Team LeadJim Fowler Ohio State UniversityRita Ralph Columbus State Community CollegeContent ContributorsNela Lakos Ohio State UniversityBart Snapp Ohio State UniversityJames Talamo Ohio State UniversityXiang Yan Edison State Community CollegeLibrarianDaniel Dotson Ohio State University Review TeamThomas Needham Ohio State UniversityCarl Stitz Lakeland Community CollegeSara Rollo North Central State College
After completing this section, students should be able to do the following.Define …
After completing this section, students should be able to do the following.Define a sequence.Write the first several terms of a sequence using an explicit formula.Write the first several terms of a sequence using a recurrence relation.Find an explicit formula for a sequence given recursively.Find a recurrence relation for a sequence given explicitly.
After completing this section, students should be able to do the following.Recognize …
After completing this section, students should be able to do the following.Recognize sequences can be generated by functions.Compute limits of sequences.Understand growth rates of basic sequences.Introduce important terminology for sequences.Apply the monotone convergence theorem
Calculus is designed for the typical two- or three-semester general calculus course, …
Calculus is designed for the typical two- or three-semester general calculus course, incorporating innovative features to enhance student learning. The book guides students through the core concepts of calculus and helps them understand how those concepts apply to their lives and the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Volume 2 covers integration, differential equations, sequences and series, and parametric equations and polar coordinates.
Discrete Mathematics: An Open Introduction is a free, open source textbook appropriate …
Discrete Mathematics: An Open Introduction is a free, open source textbook appropriate for a first or second year undergraduate course for math majors, especially those who will go on to teach. The textbook has been developed while teaching the Discrete Mathematics course at the University of Northern Colorado. Primitive versions were used as the primary textbook for that course since Spring 2013, and have been used by other instructors as a free additional resource. Since then it has been used as the primary text for this course at UNC, as well as at other institutions.
This course describes discrete mathematics, which involves processes that consist of sequences …
This course describes discrete mathematics, which involves processes that consist of sequences of individual steps (as compared to calculus, which describes processes that change in a continuous manner). The principal topics presented in this course are logic and proof, induction and recursion, discrete probability, and finite state machines. Upon successful completion of this course, the student will be able to: Create compound statements, expressed in mathematical symbols or in English, to determine the truth or falseness of compound statements and to use the rules of inference to prove a conclusion statement from hypothesis statements by applying the rules of propositional and predicate calculus logic; Prove mathematical statements involving numbers by applying various proof methods, which are based on the rules of inference from logic; Prove the validity of sequences and series and the correctness or repeated processes by applying mathematical induction; Define and identify the terms, rules, and properties of set theory and use these as tools to support problem solving and reasoning in applications of logic, functions, number theory, sequences, counting, probability, trees and graphs, and automata; Calculate probabilities and apply counting rules; Solve recursive problems by applying knowledge of recursive sequences; Create graphs and trees to represent and help prove or disprove statements, make decisions or select from alternative choices to calculate probabilities, to document derivation steps, or to solve problems; Construct and analyze finite state automata, formal languages, and regular expressions. (Computer Science 202)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.