Updating search results...

Physics

159 affiliated resources

Search Resources

View
Selected filters:
Statistical Mechanics II:  Statistical Physics of Fields, Spring 2014
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A two-semester course on statistical mechanics. Basic principles are examined in 8.333: the laws of thermodynamics and the concepts of temperature, work, heat, and entropy. Postulates of classical statistical mechanics, microcanonical, canonical, and grand canonical distributions; applications to lattice vibrations, ideal gas, photon gas. Quantum statistical mechanics; Fermi and Bose systems. Interacting systems: cluster expansions, van der Waal's gas, and mean-field theory. Topics from modern statistical mechanics are explored in 8.334: the hydrodynamic limit and classical field theories. Phase transitions and broken symmetries: universality, correlation functions, and scaling theory. The renormalization approach to collective phenomena. Dynamic critical behavior. Random systems.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kardar, Mehran
Date Added:
01/01/2014
Statistical Physics in Biology, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution.

Subject:
Biology
Life Science
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kardar, Mehran
Leonid Mirny
Date Added:
01/01/2005
Statistical Thermodynamics of Complex Liquids, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course explores the theory of self-assembly in surfactant-water (micellar) and surfactant-water-oil (micro-emulsion) systems. It also introduces the theory of polymer solutions, as well as scattering techniques, light, x-ray, and neutron scattering applied to studies of the structure and dynamics of complex liquids, and modern theory of the liquid state relevant to structured (supramolecular) liquids.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Chen, Sow-Hsin
Date Added:
01/01/2004
String Theory for Undergraduates, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to the main concepts of string theory to undergraduates. Since string theory is quantum mechanics of a relativistic string, the foundations of the subject can be explained to students exposed to both special relativity (8.033) and basic quantum mechanics (8.05). Subject develops the aspects of string theory and makes it accessible to students familiar with basic electromagnetism (8.02) and statistical mechanics (8.044). This includes the study of D-branes and string thermodynamics. This course introduces string theory to undergraduate and is based upon Prof. Zwiebach's textbook entitled A First Course in String Theory. Since string theory is quantum mechanics of a relativistic string, the foundations of the subject can be explained to students exposed to both special relativity and basic quantum mechanics. This course develops the aspects of string theory and makes it accessible to students familiar with basic electromagnetism and statistical mechanics.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Zwiebach, Barton
Date Added:
01/01/2007
Strong Interactions: Effective Field Theories of QCD, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The strong force which bind quarks together is described by a relativistic quantum field theory called quantum chromodynamics (QCD). Subject surveys: The QCD Langrangian, asymptotic freedom and deep inelastic scattering, jets, the QCD vacuum, instantons and the U(1) problem, lattice guage theory, and other phases of QCD.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Stewart, Iain
Date Added:
01/01/2006
Strongly Correlated Systems in Condensed Matter Physics, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Study of condensed matter systems where interactions between electrons play an important role. Topics vary depending on lecturer but may include low-dimension magnetic and electronic systems, disorder and quantum transport, magnetic impurities (the Kondo problem), quantum spin systems, the Hubbard model and high temperature superconductors. Topics are chosen to illustrate the application of diagrammatic techniques, field theory approaches, and renormalization group methods in condensed matter physics. In this course we shall develop theoretical methods suitable for the description of the many-body phenomena, such as Hamiltonian second-quantized operator formalism, Greens functions, path integral, functional integral, and the quantum kinetic equation. The concepts to be introduced include, but are not limited to, the random phase approximation, the mean field theory (aka saddle-point, or semiclassical approximation), the tunneling dynamics in imaginary time, instantons, Berry phase, coherent state path integral, renormalization group.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Levitov, Leonid
Date Added:
01/01/2003
Superconducting Magnets, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on one important engineering application of superconductors - the generation of large-scale and intense magnetic fields. It includes a review of electromagnetic theory; detailed treatment of magnet design and operational issues, including "usable" superconductors, field and stress analyses, magnet instabilities, ac losses and mechanical disturbances, quench and protection, experimental techniques, and cryogenics. The course also examines new high-temperature superconductors for magnets, as well as design and operational issues at high temperatures.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Iwasa,Yukikazu
Minervini, Joseph
Date Added:
01/01/2003
Systems Biology, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to quantitative methods and modeling techniques to address key questions in modern biology. Overview of quantitative modeling techniques in evolutionary biology, molecular biology and genetics, cell biology and developmental biology. Description of key experiments that validate models. Specific topics include: Evolutionary biology: theoretical models for evolution, evolution in test tube, evolution experiments with viruses and bacteria, complexity and evolution; Molecular biology and genetics: protein design, bioinformatics and genomics, constructing and modeling of genetic networks, control theory and genetic networks; Cell biology: forces and motion, cell motility, signal transduction pathways, chemotaxis and pheromone response; Development biology: pattern formation, self-organization, and models of Drosophila development.

Subject:
Biology
Life Science
Physical Science
Physics
Psychology
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Oudenaarden, Alexander van
Date Added:
01/01/2004
Systems, Modeling, and Control II, Fall 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Upon successful completion of this course, students will be able to: * Create lumped parameter models (expressed as ODEs) of simple dynamic systems in the electrical and mechanical energy domains * Make quantitative estimates of model parameters from experimental measurements * Obtain the time-domain response of linear systems to initial conditions and/or common forcing functions (specifically; impulse, step and ramp input) by both analytical and computational methods * Obtain the frequency-domain response of linear systems to sinusoidal inputs * Compensate the transient response of dynamic systems using feedback techniques * Design, implement and test an active control system to achieve a desired performance measureMastery of these topics will be assessed via homework, quizzes/exams, and lab assignments.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Barbastathis, George
Gossard, David
Hover, Franz
Date Added:
01/01/2007
Theory of Solids I, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

First term of a theoretical treatment of the physics of solids. Concept of elementary excitations. Symmetry: translational, rotational, and time-reversal invariances: theory of representations. Energy bands: APW, OPW, pseudopotential and LCAO schemes. Survey of electronic structure of metals, semimetals, semiconductors, and insulators. Excitons. Critical points. Response functions. Interactions in the electron gas.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Lee, Patrick A.
Date Added:
01/01/2004
Theory of Solids II, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This is the second term of a theoretical treatment of the physics of solids. Topics covered include linear response theory; the physics of disorder; superconductivity; the local moment and itinerant magnetism; the Kondo problem and Fermi liquid theory."

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Lee, Patrick
Date Added:
01/01/2009
Thermodynamics of Biomolecular Systems, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This subject deals primarily with equilibrium properties of macroscopic and microscopic systems, basic thermodynamics, chemical equilibrium of reactions in gas and solution phase, and macromolecular interactions.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Hamad-Schifferli, Kim
Date Added:
01/01/2005
Toward the Scientific Revolution, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The emergence of Western science: the systematization of natural knowledge in the ancient world, the transmission of the classical legacy to the Latin West, and the revolt from classical thought during the scientific revolution. Examines scientific concepts in light of their cultural and historical contexts.

Subject:
Arts and Humanities
Astronomy
Cultural Studies
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kaiser, David
Date Added:
01/01/2003
UMGC Physics Open Educational Resource List
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Word table that includes a selection of OERs that deal with the field of physics, including classical mechanics, calculus-based physics, college physics, physics for non-science majors, and more.

Subject:
Physics
Material Type:
Course Packet
Author:
UMGC Course Development
Date Added:
02/17/2021
University Physics Volume 1
Unrestricted Use
CC BY
Rating
0.0 stars

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
Alice Kolakowska
Bill Moebs
Daniel Bowman
David Anderson
David Smith
Dedra Demaree
Edward S. Ginsberg
Gerald Friedman
Joseph Trout
Kenneth Podolak
Kevin Wheelock
Lee LaRue
Lev Gasparov
Mark Lattery
Patrick Motl
Richard Ludlow
Samuel J. Ling
Takashi Sato
Tao Pang
Date Added:
08/03/2016
University Physics Volume 2
Unrestricted Use
CC BY
Rating
0.0 stars

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
Jeff Sanny
Samuel J. Ling
William Moebs
Date Added:
05/22/2019
Variational Principles in Classical Mechanics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Two dramatically different philosophical approaches to classical mechanics were proposed during the 17th – 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These variational formulations now play a pivotal role in science and engineering.

This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared. Applications to a wide variety of topics illustrate the intellectual beauty, remarkable power, and broad scope provided by use of variational principles in physics.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
University of Rochester
Author:
Douglas Cline
Date Added:
05/22/2019
A WikiTextBook for Introductory Mechanics, Fall 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This e-Book is a first step toward a shift in the role of the printed textbook from authoritative serial repository to modular, customizable, linkable, interactive hub. The ideal modern textbook should provide a clear overview of the domain, short summaries of key content, links to more detailed online source material, embedded self-assessment, and a vehicle for instant student feedback. This open-source e-Book for introductory mechanics uses ideas from modeling physics to encourage strategic, concept-based problem solving and employs a wiki format to enable multiple parallel organizations of the material, links to resources and student comments.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Barrantes, Analia
Pawl, Andrew
Pritchard, David E.
Wilk, Stephen E.
Date Added:
01/01/2009