This is a laboratory manual covering linear semiconductors, appropriate for students in …
This is a laboratory manual covering linear semiconductors, appropriate for students in an Electrical Engineering Technology program (AAS or BS). The exercises begin with basic diodes and progress through NPN and PNP bipolar transistors using various DC biasing forms. AC small signal analysis is encountered next followed by large signal class A and class B analysis. The manual concludes with exercises on JFET biasing and amplifiers.
This lab manual accompanies the text of the same name. It covers …
This lab manual accompanies the text of the same name. It covers the theory and application of operational amplifiers and other linear integrated circuits. It is appropriate for Associate and Bachelors degrees programs in Electrical and Electronic Engineering Technology, Electrical Engineering and similar areas of study.
This lab manual is intended for an introductory programming course for Electrical …
This lab manual is intended for an introductory programming course for Electrical Engineering and/or Technology students at the AAS and/or BS level. It begins with an introduction to the Multisim (tm) simulation software and progresses to programming using the Python language. Most programming assignments are based on electrical applications.
This is the companion laboratory manual to the OER text Semiconductor Devices: …
This is the companion laboratory manual to the OER text Semiconductor Devices: Theory and Application. Coverage begins at basic semiconductor devices (signal diodes, LEDs, Zeners, etc.) and proceeds through bipolar and field effect devices. Applications include rectifiers, clippers, clampers, AC to DC power supplies, small and large signal class A amplifiers, followers, class B amplifiers, ohmic region FET applications, etc. Mirror site: http://www.dissidents.com/resources/LaboratoryManualForSemiconductorDevices.pdf
Many of today’s global challenges require tech-driven solutions — climate change, the …
Many of today’s global challenges require tech-driven solutions — climate change, the growth of the world population, cyber security, the increasing demand for scarce resources, digitalization, the transition from fossil fuels to renewable energy. With this in mind, it is no surprise that one fourth of the CEOs of the world’s 100 largest corporations have an engineering degree.
Solving these global problems requires leaders who, in the first place, are comfortable with technology, models and quantitative analyses — Leaders who see systems instead of isolated problems. However, simply understanding technology is not enough. Successful leaders today must have both the ideas and the know-how to put these ideas into action by working collaboratively with others, winning their hearts and minds.
We need leaders who know how to seize opportunities in a networked world, and can mobilize people and other stakeholders for large-scale change. Leaders who lead fulfilling lives and who are able to move themselves and others from the ‘me’ to the ‘we’. Leaders who are long-term oriented and who deliver economic profit, while also making positive contributions to society and the environment. We call these leaders ‘sustainable leaders’.
Students of this course will develop a broad understanding of Lean/Six Sigma …
Students of this course will develop a broad understanding of Lean/Six Sigma principles and practices, build capability to implement Lean/Six Sigma initiatives in manufacturing operations, and learn to operate with awareness of Lean/Six Sigma at the enterprise level. All course materials are organized around a common "single-point lesson" (SPL) format, with some of the SPLs provided by the instructor and guests and with some developed and delivered by student teams.
Lego Robotics uses Legos as a fun tool to explore robotics, mechanical …
Lego Robotics uses Legos as a fun tool to explore robotics, mechanical systems, electronics, and programming. This seminar is primarily a lab experience which provides students with resources to design, build, and program functional robots constructed from Legos and a few other parts such as motors and sensors.
The course linear modeling delivers the skillset in linear or structural modeling …
The course linear modeling delivers the skillset in linear or structural modeling that is required to solve structural problems from which you can develop finite element (FE) models for practical applications. It also teaches how results can be correctly interpreted. The course uses an open source FE package in a series of weekly practical sessions where models are constructed for sample problems and results are validated against simplified analytical models or open literature.
This subject is a survey of the fundamental analytic tools, approaches, and …
This subject is a survey of the fundamental analytic tools, approaches, and techniques which are useful in the design and operation of logistics systems and integrated supply chains. The material is taught from a managerial perspective, with an emphasis on where and how specific tools can be used to improve the overall performance and reduce the total cost of a supply chain. We place a strong emphasis on the development and use of fundamental models to illustrate the underlying concepts involved in both intra and inter-company logistics operations.While our main objective is to develop and use models to help us analyze these situations, we will make heavy use of examples from industry to provide illustrations of the concepts in practice. This is neither a purely theoretical nor a case study course, but rather an analytical course that addresses real problems found in practice.
This course begins with a comparative review of conventional and advanced multiple …
This course begins with a comparative review of conventional and advanced multiple attribute decision making (MADM) models in engineering practice. Next, a new application of particular MADM models in reliable material selection of sensitive structural components as well as a multi-criteria Taguchi optimization method is discussed. Other specific topics include dealing with uncertainties in material properties, incommensurability in decision-makers opinions for the same design, objective ways of weighting performance indices, rank stability analysis, compensations and non-compensations.
Magnetostatics, origin of magnetism in materials, magnetic domains and domain walls, magnetic …
Magnetostatics, origin of magnetism in materials, magnetic domains and domain walls, magnetic anisotropy, reversible and irreversible magnetization processes; hard and soft magnetic materials and magnetic recording. Special topics: magnetism of thin films, surfaces and fine particles; transport in ferromagnets, magnetoresistive sensors, and amorphous magnetic materials.
This course gives an overview of engineering management and covers topics such …
This course gives an overview of engineering management and covers topics such as financial principles, management of innovation, technology strategy, and best management practices. The focus of the course is the development of individual skills and team work. This is carried out through an exposure to management tools.
The Manufacturing Processes Course was developed through the Ohio Department of Higher Education OER …
The Manufacturing Processes Course was developed through the Ohio Department of Higher Education OER Innovation Grant. This work was completed and the course was posted in October 2019. The course is part of the Ohio Transfer Assurance Guides and is also named OET010. For more information about credit transfer between Ohio colleges and universities, please visit: www.ohiohighered.org/transfer.Team LeadRobert Speckert Miami University HamiltonContent ContributorsDavid Mohring Northwest State Community CollegeGopal Nadkarni University of AkronOya Tukel Cleveland State UniversityLibrarianDaniela Solomon Case Western Reserve UniversityReview TeamMahesh Srinivasan University of AkronSteven Sykes Edison State Community College
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.