The goal of this course is to teach both the fundamentals of …
The goal of this course is to teach both the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Lectures and class discussions will cover the background and fundamental findings in a particular area of nuclear cell biology. The assigned readings will provide concrete examples of the experimental approaches and logic used to establish these findings. Some examples of topics include genome and systems biology, transcription, and gene expression.
The endoplasmic reticulum (ER) orchestrates different cellular processes by which proteins are …
The endoplasmic reticulum (ER) orchestrates different cellular processes by which proteins are synthesized, correctly folded, modified and ultimately transported to their final destinations. As part of this crucial biosynthetic process, proteins that are not properly folded and consequently detrimental to normal cellular function are constantly generated. A common signature of many neurodegenerative diseases, including Alzheimer's and Parkinson's, is accumulation and deposition of misfolded proteins that arise when the ability of cells to deal with the burden of misfolded proteins is compromised. In this course, we will explore how the ER quality control machinery ensures that only properly assembled proteins exit the ER while distinguishing between nascent proteins en route to their biologically active folded state from those that are terminally misfolded.
How genetics can add to our understanding of cognition, language, emotion, personality, …
How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications.
Study and discussion of computational approaches and algorithms for contemporary problems in …
Study and discussion of computational approaches and algorithms for contemporary problems in functional genomics. Topics include DNA chip design, experimental data normalization, expression data representation standards, proteomics, gene clustering, self-organizing maps, Boolean networks, statistical graph models, Bayesian network models, continuous dynamic models, statistical metrics for model validation, model elaboration, experiment planning, and the computational complexity of functional genomics problems.
Used for students receiving Advanced Placement credit and transfer credit. Program of …
Used for students receiving Advanced Placement credit and transfer credit. Program of study or research to be arranged with a Department faculty member. Written report required. Permission of Department required.
The principles involved in morphogenesis and the determination of complex cellular patterns …
The principles involved in morphogenesis and the determination of complex cellular patterns are examined using examples from animal systems in which the tools of genetics, molecular biology and cell biology have been applied to reveal mechanism. This graduate and advanced undergraduate level lecture and literature discussion course covers the current understanding of the molecular mechanisms that regulate animal development. Evolutionary mechanisms are emphasized as well as the discussion of relevant diseases. Vertebrate (mouse, chick, frog, fish) and invertebrate (fly, worm) models are covered. Specific topics include formation of early body plan, cell type determination, organogenesis, morphogenesis, stem cells, cloning, and issues in human development.
Considers molecular control of neural specification, formation of neuronal connections, construction of …
Considers molecular control of neural specification, formation of neuronal connections, construction of neural systems, and the contributions of experience to shaping brain structure and function. Topics include: neural induction and pattern formation, cell lineage and fate determination, neuronal migration, axon guidance, synapse formation and stabilization, activity-dependent development and critical periods, development of behavior.
Current research on the evolution and development of cognition and affect, including …
Current research on the evolution and development of cognition and affect, including intuitive physics, biology, and psychology, language, emotions sexuality, social relations.
Seminar covering topics of current interest in biology. Includes reading and analysis …
Seminar covering topics of current interest in biology. Includes reading and analysis of research papers and student presentations. Contact Biology Education Office for topics.
7.02 and 7.021 require simultaneous registration. Application of experimental techniques in biochemistry, …
7.02 and 7.021 require simultaneous registration. Application of experimental techniques in biochemistry, microbiology, and cell biology. Emphasizes integrating factual knowledge with understanding the design of experiments and data analysis to prepare the students for research projects. Instruction and practice in written communication provided.
This course is the scientific communications portion of course 7.02, Experimental Biology …
This course is the scientific communications portion of course 7.02, Experimental Biology and Communication. Students develop their skills as writers of scientific research, skills that also contribute to the learning of the 7.02 course materials. Through in class and out of class writing exercises, students explore the genre of the research article and its components while developing an understanding of the materials covered in the 7.02 laboratory.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.