Updating search results...

Search Resources

23 Results

View
Selected filters:
  • Genetics
Bioethics, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This course does not seek to provide answers to ethical questions. Instead, the course hopes to teach students two things. First, how do you recognize ethical or moral problems in science and medicine? When something does not feel right (whether cloning, or failing to clone) ‰ŰÓ what exactly is the nature of the discomfort? What kind of tensions and conflicts exist within biomedicine? Second, how can you think productively about ethical and moral problems? What processes create them? Why do people disagree about them? How can an understanding of philosophy or history help resolve them? By the end of the course students will hopefully have sophisticated and nuanced ideas about problems in bioethics, even if they do not have comfortable answers."

Subject:
Arts and Humanities
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Hare, Caspar
Jones, David
Date Added:
01/01/2009
Chemicals in the Environment: Toxicology and Public Health (BE.104J), Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course addresses the challenges of defining a relationship between exposure to environmental chemicals and human disease. Course topics include epidemiological approaches to understanding disease causation; biostatistical methods; evaluation of human exposure to chemicals, and their internal distribution, metabolism, reactions with cellular components, and biological effects; and qualitative and quantitative health risk assessment methods used in the U.S. as bases for regulatory decision-making. Throughout the term, students consider case studies of local and national interest.

Subject:
Applied Science
Environmental Science
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Sherley, James
Date Added:
01/01/2005
Cognitive and Behavioral Genetics, Spring 2001
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications.

Subject:
Biology
Genetics
Life Science
Psychology
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Nedivi, Elly
Pinker, Steve
Date Added:
01/01/2001
Computation for Biological Engineers, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the analytical, graphical, and numerical methods supporting the analysis and design of integrated biological systems. Topics include modularity and abstraction in biological systems, mathematical encoding of detailed physical problems, numerical methods for solving the dynamics of continuous and discrete chemical systems, statistics and probability in dynamic systems, applied local and global optimization, simple feedback and control analysis, statistics and probability in pattern recognition.

Subject:
Genetics
Life Science
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Alm, Eric
Date Added:
01/01/2006
Design of Medical Devices and Implants, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This design course targets the solution of clinical problems by use of implants and other medical devices. Topics include the systematic use of cell-matrix control volumes; the role of stress analysis in the design process; anatomic fit, shape and size of implants; selection of biomaterials; instrumentation for surgical implantation procedures; preclinical testing for safety and efficacy, including risk/benefit ratio assessment evaluation of clinical performance and design of clinical trials. Student project materials are drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants."

Subject:
Genetics
Health Sciences
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Spector, Myron
Yannas, Ioannis
Date Added:
01/01/2006
Elements of Mechanical Design, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliverables of their project. Student assessment is based upon mastery of the course materials and the student's ability to synthesize, model and fabricate a mechanical device subject to engineering constraints (e.g. cost and time/schedule)."

Subject:
Chemistry
Engineering
Genetics
Life Science
Manufacturing
Physical Science
Professional Studies
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Culpepper, Martin
Date Added:
01/01/2009
Experimental Microbial Genetics, Fall 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" In this class, students engage in independent research projects to probe various aspects of the physiology of the bacteriumĺĘPseudomonas aeruginosa PA14, an opportunistic pathogen isolated from the lungs of cystic fibrosis patients. Students use molecular genetics to examine survival in stationary phase, antibiotic resistance, phase variation, toxin production, and secondary metabolite production. Projects aim to discover the molecular basis for these processes using both classical and cutting-edge techniques. These include plasmid manipulation, genetic complementation, mutagenesis, PCR, DNA sequencing, enzyme assays, and gene expression studies. Instruction and practice in written and oral communication are also emphasized. WARNING NOTICE The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear the sole responsibility, liability, and risk for the implementation of such safety procedures and measures. MIT shall have no responsibility, liability, or risk for the content or implementation of any of the material presented. Legal Notice "

Subject:
Biology
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Croal, Laura
Laub, Michael
Melvold, Janis
Newman, Dianne
Date Added:
01/01/2008
The Fountain of Life: From Dolly to Customized Embryonic Stem Cells, Fall 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" During development, the genetic content of each cell remains, with a few exceptions, identical to that of the zygote. Most differentiated cells therefore retain all of the genetic information necessary to generate an entire organism. It was through pioneering technology of somatic cell nuclear transfer (SCNT) that this concept was experimentally proven. Only 10 years ago the sheep Dolly was the first mammal to be cloned from an adult organism, demonstrating that the differentiated state of a mammalian cell can be fully reversible to a pluripotent embryonic state. A key conclusion from these experiments was that the difference between pluripotent cells such as embryonic stem (ES) cells and unipotent differentiated cells is solely a consequence of reversible changes. These changes, which have proved to involve reversible alterations to both DNA and to proteins that bind DNA, are known as epigenetic, to distinguish them from genetic alterations to DNA sequence. In this course we will explore such epigenetic changes and study different approaches that can return a differentiated cell to an embryonic state in a process referred to as epigenetic reprogramming, which will ultimately allow generation of patient-specific stem cells and application to regenerative therapy. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching."

Subject:
Biology
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Meissner, Alexander
Date Added:
01/01/2007
Freshman Seminar: Structural Basis of Genetic Material: Nucleic Acids, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Since the discovery of the structure of the DNA double helix in 1953 by Watson and Crick, the information on detailed molecular structures of DNA and RNA, namely, the foundation of genetic material, has expanded rapidly. This discovery is the beginning of the "Big Bang" of molecular biology and biotechnology. In this seminar, students discuss, from a historical perspective and current developments, the importance of pursuing the detailed structural basis of genetic materials.

Subject:
Biology
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Zhang, Shuguang
Date Added:
01/01/2005
General Biology I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

An integrated course stressing the principles of biology. Life processes are examined primarily at the molecular and cellular levels. Intended for students majoring in biology or for non-majors who wish to take advanced biology courses.

Subject:
Biology
Chemistry
Genetics
Life Science
Physical Science
Material Type:
Activity/Lab
Full Course
Lecture Notes
Syllabus
Provider:
UMass Boston
Provider Set:
UMass Boston OpenCourseWare
Author:
Professor Brian White
Date Added:
05/23/2019
Genetic Neurobiology, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior, by functional analysis of mutations and molecular analysis of their genes. Concentrates on work with nematodes, fruit flies, mice, and humans.

Subject:
Biology
Genetics
Life Science
Psychology
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Littleton, Troy
Quinn, William
Date Added:
01/01/2005
Genetics, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. Structure and function of genes, chromosomes and genomes. Biological variation resulting from recombination, mutation, and selection. Population genetics. Use of genetic methods to analyze protein function, gene regulation and inherited disease.

Subject:
Biology
Genetics
Life Science
Material Type:
Activity/Lab
Assessment
Diagram/Illustration
Full Course
Homework/Assignment
Lecture Notes
Student Guide
Syllabus
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Fink, Gerald
Kaiser, Chris
Mischke, Michelle
Samson, Leona
Date Added:
01/01/2004
Genomic Medicine, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course reviews the key genomic technologies and computational approaches that are driving advances in prognostics, diagnostics, and treatment. Throughout the semester, emphasis will return to issues surrounding the context of genomics in medicine including: what does a physician need to know? what sorts of questions will s/he likely encounter from patients? how should s/he respond? Lecturers will guide the student through real world patient-doctor interactions. Outcome considerations and socioeconomic implications of personalized medicine are also discussed. The first part of the course introduces key basic concepts of molecular biology, computational biology, and genomics. Continuing in the informatics applications portion of the course, lecturers begin each lecture block with a scenario, in order to set the stage and engage the student by showing: why is this important to know? how will the information presented be brought to bear on medical practice? The final section presents the ethical, legal, and social issues surrounding genomic medicine. A vision of how genomic medicine relates to preventative care and public health is presented in a discussion forum with the students where the following questions are explored: what is your level of preparedness now? what challenges must be met by the healthcare industry to get to where it needs to be?

Subject:
Genetics
Health Sciences
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kohane, Isaac
Date Added:
01/01/2004
HHMI BioInteractive
Rating
0.0 stars

From the Website:

HHMI BioInteractive brings the power of real science stories into tens of thousands of high school and undergraduate life science classrooms.

Our stories anchor a variety of classroom resources based on peer-reviewed science. From data-rich activities and case studies to high-quality videos and interactive media, our resources are designed to connect students to big ideas in biology, promote engagement with science practices, and instill awe and wonder about the living world.

In addition, the BioInteractive website provides educators with planning tools to build resource playlists and storylines, and professional learning materials and opportunities to deepen their scientific and pedagogical expertise.

Our resources and tools reflect current knowledge of how students learn and evidence-based strategies for supporting engagement and inclusion.

We also believe inspiration, curiosity, and love of the natural world should be nurtured outside of the classroom, and we partner with filmmakers to bring high-quality science films to everyone.

Subject:
Anatomy/Physiology
Applied Science
Biology
Ecology
Environmental Science
Genetics
Life Science
Material Type:
Activity/Lab
Case Study
Lesson
Module
Unit of Study
Author:
HHMI.org
Date Added:
04/13/2020
Introduction to Biological Engineering Design, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This class is a project-based introduction to the engineering of synthetic biological systems. Throughout the term, students develop projects that are responsive to real-world problems of their choosing, and whose solutions depend on biological technologies. Lectures, discussions, and studio exercises will introduce (1) components and control of prokaryotic and eukaryotic behavior, (2) DNA synthesis, standards, and abstraction in biological engineering, and (3) issues of human practice, including biological safety; security; ownership, sharing, and innovation; and ethics. Enrollment preference is given to freshmen. This subject was originally developed and first taught in Spring 2008 by Drew Endy and Natalie Kuldell. Many of Drew's materials are used in this Spring 2009 version, and are included with his permission. This OCW Web site is based on the OpenWetWare class Wiki, found at OpenWetWare: 20.020 (S09)"

Subject:
Biology
Chemistry
Genetics
Life Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kuldell, Natalie
Date Added:
01/01/2009
Introductory Biology, Spring 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution.Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.  

Subject:
Biology
Genetics
Life Science
Material Type:
Assessment
Diagram/Illustration
Full Course
Homework/Assignment
Lesson Plan
Reading
Syllabus
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Diviya Sinha
Hazel Sive
Tyler Jacks
Date Added:
01/01/2013
Language & Life Sciences: eJournals
Rating
0.0 stars

Biotechnology is perhaps the most rapidly advancing area in science today. The Advances in Biotechnology volume has been created to provide language teachers with resources about breakthroughs in biotechnology. Each chapter of the volume highlights one aspect of research in the field of DNA and genetics along with its applications to and implications for society. The chapters feature relevant background information on each topic, interactive and communicative classroom activities, and a list of related print and Internet resources that will allow teachers to expand the lesson further.

Subject:
English as a Second Language
Genetics
Life Science
Material Type:
Activity/Lab
Lesson Plan
Reading
Teaching/Learning Strategy
Provider:
U.S. Department of State, Bureau of Educational and Cultural Affairs
Author:
Donna M. Brinton, Christine Holten, Jodi L. Nooyen
Date Added:
04/03/2020
Molecular Structure of Biological Materials (BE.442), Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Basic molecular structural principles of biological materials. Molecular structures of various materials of biological origin, including collagen, silk, bone, protein adhesives, GFP, self-assembling peptides. Molecular design of new biological materials for nanotechnology, biocomputing and regenerative medicine. Graduate students are expected to complete additional coursework. This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to give guest lectures.

Subject:
Biology
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Zhang, Shuguang
Date Added:
01/01/2005
Nanomechanics of Materials and Biomaterials, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on the latest scientific developments and discoveries in the field of nanomechanics, the study of forces and motion on extremely tiny (10-9 m) areas of synthetic and biological materials and structures. At this level, mechanical properties are intimately related to chemistry, physics, and quantum mechanics. Most lectures will consist of a theoretical component that will then be compared to recent experimental data (case studies) in the literature. The course begins with a series of introductory lectures that describes the normal and lateral forces acting at the atomic scale. The following discussions include experimental techniques in high resolution force spectroscopy, atomistic aspects of adhesion, nanoindentation, molecular details of fracture, chemical force microscopy, elasticity of single macromolecular chains, intermolecular interactions in polymers, dynamic force spectroscopy, biomolecular bond strength measurements, and molecular motors.

Subject:
Biology
Chemistry
Genetics
Life Science
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Ortiz, Christine
Date Added:
01/01/2007
Quantitative Genomics, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Subject assesses the relationships between sequence, structure, and function in complex biological networks as well as progress in realistic modeling of quantitative, comprehensive functional-genomics analyses. Topics include: algorithmic, statistical, database, and simulation approaches; and practical applications to biotechnology, drug discovery, and genetic engineering. Future opportunities and current limitations critically assessed. Problem sets and project emphasize creative, hands-on analyses using these concepts.

Subject:
Biology
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Berwick, Robert
Kho, Alvin
Kohane, Isaac
Mirny, Leonid
Date Added:
01/01/2005