How do populations grow? How do viruses spread? What is the trajectory …
How do populations grow? How do viruses spread? What is the trajectory of a glider?
Many real-life problems can be described and solved by mathematical models. In this course, you will form a team with another student and work in a project to solve a real-life problem.
You will learn to analyze your chosen problem, formulate it as a mathematical model (containing ordinary differential equations), solve the equations in the model, and validate your results. You will learn how to implement Euler’s method in a Python program.
If needed, you can refine or improve your model, based on your first results. Finally, you will learn how to report your findings in a scientific way.
This course is mainly aimed at Bachelor students from Mathematics, Engineering and Science disciplines. However it will suit anyone who would like to learn how mathematical modeling can solve real-world problems.
This course covers the mathematical techniques necessary for understanding of materials science …
This course covers the mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from the materials science and engineering core courses (3.012 and 3.014) to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, and fourier analysis. Users may find additional or updated materials at Professor Carter's 3.016 course Web site.
This class introduces elementary programming concepts including variable types, data structures, and …
This class introduces elementary programming concepts including variable types, data structures, and flow control. After an introduction to linear algebra and probability, it covers numerical methods relevant to mechanical engineering, including approximation (interpolation, least squares and statistical regression), integration, solution of linear and nonlinear equations, ordinary differential equations, and deterministic and probabilistic approaches. Examples are drawn from mechanical engineering disciplines, in particular from robotics, dynamics, and structural analysis. Assignments require MATLAB programming.
Introduction to numerical methods: interpolation, differentiation, integration, systems of linear equations. Solution …
Introduction to numerical methods: interpolation, differentiation, integration, systems of linear equations. Solution of differential equations by numerical integration, partial differential equations of inviscid hydrodynamics: finite difference methods, panel methods. Fast Fourier Transforms. Numerical representation of sea waves. Computation of the motions of ships in waves. Integral boundary layer equations and numerical solutions.
This course introduces dynamic processes and the engineering tasks of process operations …
This course introduces dynamic processes and the engineering tasks of process operations and control. Subject covers modeling the static and dynamic behavior of processes; control strategies; design of feedback, feedforward, and other control structures; model-based control; and applications to process equipment.
This course covers the fundamentals of signal and system analysis, focusing on …
This course covers the fundamentals of signal and system analysis, focusing on representations of discrete-time and continuous-time signals (singularity functions, complex exponentials and geometrics, Fourier representations, Laplace and Z transforms, sampling) and representations of linear, time-invariant systems (difference and differential equations, block diagrams, system functions, poles and zeros, convolution, impulse and step responses, frequency responses). Applications are drawn broadly from engineering and physics, including feedback and control, communications, and signal processing.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.