Have you ever wondered what it takes to get your train on …
Have you ever wondered what it takes to get your train on the right platform at the scheduled time every day?
Understanding the complexity behind today’s sophisticated railway systems will give you a better insight into how this safe and reliable transportation system works. We will show you the many factors which are involved and how multiple people, behind the scenes, have a daily task that enables you to get from home to work. Journey with us into the world of rail – a complex system that connects people, cities and countries.
Railway systems entail much more than a train and a track. They are based on advanced technical and operational solutions, dealing with continuously changing demands for more efficient transport for both passengers and freight every day. Each system consists of many components that must be properly integrated: from trains, tracks, stations, signaling and control systems, through monitoring, maintenance and the impact on cities, landscape and people. This integration is the big challenge and the source of many train delays, inconvenient connections and other issues that impact our society.
This engineering course attempts to tackle those issues by introducing you to a holistic approach to railway systems engineering. You will learn how the system components depend on each other to create a reliable, efficient and state-of-the-art network.
This course examines the issues, principles, and challenges toward building relational machines …
This course examines the issues, principles, and challenges toward building relational machines through a combination of studio-style design and critique along with lecture, lively discussion of course readings, and assignments. Insights from social psychology, human-computer interaction, and design will be examined, as well as how these ideas are manifest in a broad range of applications for software agents and robots.
This course is the second course of the quantum field theory trimester …
This course is the second course of the quantum field theory trimester sequence beginning with Relativistic Quantum Field Theory I (8.323) and ending with Relativistic Quantum Field Theory III (8.325). It develops in depth some of the topics discussed in 8.323 and introduces some advanced material.
It is expected that Students who take part in this course have …
It is expected that Students who take part in this course have completed almost all courses of their MSc and are about to start on their Master Orientation project, their Literature Study or MSc thesis depending on their chosen MSC track.
It is of little value to take this course early, so please plan accordingly! Course Contents The aim of the course is to be a research-driven preparation for the aerospace engineering MSc thesis in the final year of the MSc. It will help you prepare for the challenges of your thesis work.
The course will consist of 7 lectures and will be taught online using video lectures in periods 1, 2 and 3 and face-to-face using traditional lectures in period 4.
The lecture set up is as follows: 1. Research Design in MSc - Introduction to research, research framework 2. Research Methods - Stages of a project, Research objective, research questions, research strategy, research methods 3. Data Analysis - Quantitative & Qualitative methods 4. Validation & Verification - How to validate & verify your work? 5. Project Management & Peer review of draft Project plan - How to manage your project and your thesis progress. Project plan peer review 6. Planning - How to plan, expectations, Gannt Charts 7. Literature Review - How to carry out a scientific literature review? Differences between review and research
Please be advised that all lectures are also available via Blackboard for those following the online version. It is possible to do this course by distant learning, attendance in the 4th period, though highly appreciated, is not mandatory! Study Goals At the end of the course the student will: - be aware of the expectations of an MSc student - be able to formulate a research question and research aim - be able to set up a research plan for their MOP/Literature Study/MSc thesis - be able to write a literature review based on the research plan with a view to select appropriate methodologies for their MOP/MSc thesis
Education Method (Online) Lectures, Assignments and voluntary Peer review of each others research plans and literature studies
Innovation may bring a lot of good to society, but innovation is …
Innovation may bring a lot of good to society, but innovation is not a good in itself. History provides many examples of new technologies that have had serious negative consequences or that simply just failed to address significant societal challenges.
This course discusses the concept of responsible innovation, its meaning and its significance by addressing the societal implications of new technologies and showing how we might incorporate ethical considerations into technical innovations.
In this course, we will: discuss the concept of responsible innovation, the individual and collective responsibility and the ethical issues regarding innovation discuss tools and approaches to responsible innovation, like Value Sensitive Design (VSD) investigate the economic aspects of responsible innovation introduce constructive technology assessment elucidate the relation between risk and responsible innovation We will do so on the basis of technological case studies. Cases that will be discussed are, among others, nanotechnology, offshore wind parks, Google car, nuclear power, cloud computing, smart meters for electricity, robots in the care sector (carebots), low budget meteorological weather stations in Africa and CO2 capture and storage.
During the course you may team-up with your fellow students to discuss the case studies in an international context. Moreover, students are encouraged to bring their own cases in dedicated discussion fora.
This course is for all those interested in the relationship between technological innovations, ethics and society. It is especially relevant for industry, public, and academic professionals working on developing innovative technologies and students following a traditional technical curriculum who are interested in key value questions attached to their studies.
This course is an introduction to the history, theory, practice, and implications …
This course is an introduction to the history, theory, practice, and implications of rhetoric, the art and craft of persuasion. This course specifically focuses on the ways that scientists use various methods of persuasion in the construction of scientific knowledge.
Chemical rocket propulsion systems for launch, orbital, and interplanetary flight. Modeling of …
Chemical rocket propulsion systems for launch, orbital, and interplanetary flight. Modeling of solid, liquid-bipropellant, and hybrid rocket engines. Thermochemistry, prediction of specific impulse. Nozzle flows including real gas and kinetic effects. Structural constraints. Propellant feed systems, turbopumps. Combustion processes in solid, liquid, and hybrid rockets. Cooling; heat sink, ablative, and regenerative.
This subject teaches students, having an initial interest in sailing design, how …
This subject teaches students, having an initial interest in sailing design, how to design good yachts. Topics covered include hydrostatics, transverse stability, and the incorporation of the design spiral into one's working methods. Computer aided design (CAD) is used to design the shapes of hulls, appendages and decks, and is an important part of this course. The capstone project in this course is the Final Design Project in which each student designs a sailing yacht, complete in all major respects. The central material for this subject is the content of the book Principals of Yacht Design by Larssson and Eliasson (see further description in the syllabus). All the class lectures are based on the material in this book. The figures in the book which are shown in class (but not reproduced on this site), contain the essential material and their meaning is explained in detail during the lecture sessions. Mastery of the material in the book and completing a design project provides the desired and needed education.
This course deals with the basic principles and design aspects of sanitary …
This course deals with the basic principles and design aspects of sanitary engineering infrastructure. This comprises: drinking water supply and treatment, sewerage and wastewater treatment. Study goals: Insight in technological aspects of the urban water infrastructure
Fundamentals of satellite engineering design, including distributed satellite. Studies orbital environment. Analyzes …
Fundamentals of satellite engineering design, including distributed satellite. Studies orbital environment. Analyzes problems of station keeping, attitude control, communications, power generation, structural design, thermal balance, and subsystem integration. Considers trade-offs among weight, efficiency, cost, and reliability. Discusses choice of design parameters, such as size, weight, power levels, temperature limits, frequency, and bandwidth. Examples taken from current satellite systems. Satellite Engineering introduces students to subsystem design in engineering spacecraft. The course presents characteristic subsystems, such as power, structure, communication and control, and analyzes the engineering trades necessary to integrate subsystems successfully into a satellite. Discussions of spacecraft operating environment and orbital mechanics help students to understand the functional requirements and key design parameters for satellite systems.
This text covers the theory and application of discrete semiconductor devices including …
This text covers the theory and application of discrete semiconductor devices including diodes, bipolar junction transistors, JFETs, MOSEFETs and IGBTs. It is appropriate for Associate and Bachelors degrees programs in Electrical and Electronic Engineering Technology, Electrical Engineering and similar areas of study. Applications include rectifying, clipping, clamping, switching, small signal amplifiers and followers, and class A, B and D power amplifiers. A companion laboratory manual is available. The text is also available in Open Document Text (.odt) format.
This course introduces sensory systems and multi-sensory fusion using the vestibular and …
This course introduces sensory systems and multi-sensory fusion using the vestibular and spatial orientation systems as a model. Topics range from end organ dynamics to neural responses, to sensory integration, to behavior, and adaptation, with particular application to balance, posture and locomotion under normal gravity and space conditions. Depending upon the background and interests of the students, advanced term project topics might include motion sickness, astronaut adaptation, artificial gravity, lunar surface locomotion, vestibulo-cardiovascular responses, vestibular neural prostheses, or other topics of interest.
Ship longitudinal strength and hull primary stresses. Ship structural design concepts. Effect of superstructures and dissimilar materials on primary strength. Transverse shear stresses in the hull girder. Torsional strength of ships.Design limit states including plate bending, column and panel buckling, panel ultimate strength, and plastic analysis. Matrix stiffness, grillage, and finite element analysis. Computer projects on the structural design of a midship module. This course is intended for first year graduate students and advanced undergraduates with an interest in design of ships or offshore structures. It requires a sufficient background in structural mechanics. Computer applications are utilized, with emphasis on the theory underlying the analysis. Hydrostatic loading, shear load and bending moment, and resulting primary hull primary stresses will be developed. Topics will include; ship structural design concepts, effect of superstructures and dissimilar materials on primary strength, transverse shear stresses in the hull girder, and torsional strength among others. Failure mechanisms and design limit states will be developed for plate bending, column and panel buckling, panel ultimate strength, and plastic analysis. Matrix stiffness, grillage, and finite element analysis will be introduced. Design of a ship structure will be analyzed by "hand" with desktop computer tools and a final design project using current applications for structural design of a section will be accomplished.
Subject provides a solid theoretical foundation for the analysis and processing of …
Subject provides a solid theoretical foundation for the analysis and processing of experimental data, and real-time experimental control methods. Includes spectral analysis, filter design, system identification, simulation in continuous and discrete-time domains. Emphasis on practical problems with laboratory exercises. Subject is designated as a d'Arbeloff Laboratory "gateway" subject.
This course covers the fundamentals of signal and system analysis, focusing on …
This course covers the fundamentals of signal and system analysis, focusing on representations of discrete-time and continuous-time signals (singularity functions, complex exponentials and geometrics, Fourier representations, Laplace and Z transforms, sampling) and representations of linear, time-invariant systems (difference and differential equations, block diagrams, system functions, poles and zeros, convolution, impulse and step responses, frequency responses). Applications are drawn broadly from engineering and physics, including feedback and control, communications, and signal processing.
This course was developed in 1987 by the MIT Center for Advanced …
This course was developed in 1987 by the MIT Center for Advanced Engineering Studies. It was designed as a distance-education course for engineers and scientists in the workplace. Signals and Systems is an introduction to analog and digital signal processing, a topic that forms an integral part of engineering systems in many diverse areas, including seismic data processing, communications, speech processing, image processing, defense electronics, consumer electronics, and consumer products. The course presents and integrates the basic concepts for both continuous-time and discrete-time signals and systems. Signal and system representations are developed for both time and frequency domains. These representations are related through the Fourier transform and its generalizations, which are explored in detail. Filtering and filter design, modulation, and sampling for both analog and digital systems, as well as exposition and demonstration of the basic concepts of feedback systems for both analog and digital systems, are discussed and illustrated.
In dredging, trenching, (deep sea) mining, drilling, tunnel boring and many other …
In dredging, trenching, (deep sea) mining, drilling, tunnel boring and many other applications, sand, clay or rock has to be excavated.The book covers horizontal transport of settling slurries (Newtonian slurries). Non-settling (non-Newtonian) slurries are not covered.
Advanced semiconductor devices are a new source of energy for the 21st …
Advanced semiconductor devices are a new source of energy for the 21st century, delivering electricity directly from sunlight. Suitable semiconductor materials, device physics, and fabrication technologies for solar cells are presented in this course. The guidelines for design of a complete solar cell system for household application are explained. Cost aspects, market development, and the application areas of solar cells are presented.
The course Solar Energy will teach you to design a complete photovoltaic …
The course Solar Energy will teach you to design a complete photovoltaic system. The course will introduce you to the technology that converts solar energy into electricity, heat and solar fuels with a main focus on electricity generation. Photovoltaic (PV) devices are presented as advanced semiconductor devices that deliver electricity directly from sunlight. The emphasis is on understanding the working principle of a solar cell, fabrication of solar cells, PV module construction and the design of a PV system. You will understand the principles of the photovoltaic conversion (the conversion of light into electricity). You will learn about the advantages, limitations and challenges of different solar cell technologies, such as crystalline silicon solar cell technology, thin film solar cell technologies and the latest novel solar cell concepts as studied on lab-scale. The course will treat the specifications of solar modules and show you how to design a complete solar system for any particular application. The suitable semiconductor materials, device physics, and fabrication technologies for solar cells are presented. The guidelines for design of a complete solar cell system for household application are explained. Alternative storage approaches through solar fuels or conversion of solar energy in to heat will be discussed. The cost aspects, market development, and the application areas of solar cells are presented.
The key factor in getting more efficient and cheaper solar energy panels …
The key factor in getting more efficient and cheaper solar energy panels is the advance in the development of photovoltaic cells. In this course you will learn how photovoltaic cells convert solar energy into useable electricity. You will also discover how to tackle potential loss mechanisms in solar cells. By understanding the semiconductor physics and optics involved, you will develop in-depth knowledge of how a photovoltaic cell works under different conditions. You will learn how to model all aspects of a working solar cell. For engineers and scientists working in the photovoltaic industry, this course is an absolute must to understand the opportunities for solar cell innovation.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.