Updating search results...

Search Resources

28 Results

View
Selected filters:
  • Genetics
Introductory Biology, Spring 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution.Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.  

Subject:
Biology
Genetics
Life Science
Material Type:
Assessment
Diagram/Illustration
Full Course
Homework/Assignment
Lesson Plan
Reading
Syllabus
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Diviya Sinha
Hazel Sive
Tyler Jacks
Date Added:
01/01/2013
Language & Life Sciences: eJournals
Rating
0.0 stars

Biotechnology is perhaps the most rapidly advancing area in science today. The Advances in Biotechnology volume has been created to provide language teachers with resources about breakthroughs in biotechnology. Each chapter of the volume highlights one aspect of research in the field of DNA and genetics along with its applications to and implications for society. The chapters feature relevant background information on each topic, interactive and communicative classroom activities, and a list of related print and Internet resources that will allow teachers to expand the lesson further.

Subject:
English as a Second Language
Genetics
Life Science
Material Type:
Activity/Lab
Lesson Plan
Reading
Teaching/Learning Strategy
Provider:
U.S. Department of State, Bureau of Educational and Cultural Affairs
Author:
Donna M. Brinton, Christine Holten, Jodi L. Nooyen
Date Added:
04/03/2020
Molecular Structure of Biological Materials (BE.442), Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Basic molecular structural principles of biological materials. Molecular structures of various materials of biological origin, including collagen, silk, bone, protein adhesives, GFP, self-assembling peptides. Molecular design of new biological materials for nanotechnology, biocomputing and regenerative medicine. Graduate students are expected to complete additional coursework. This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to give guest lectures.

Subject:
Biology
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Zhang, Shuguang
Date Added:
01/01/2005
Nanomechanics of Materials and Biomaterials, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on the latest scientific developments and discoveries in the field of nanomechanics, the study of forces and motion on extremely tiny (10-9 m) areas of synthetic and biological materials and structures. At this level, mechanical properties are intimately related to chemistry, physics, and quantum mechanics. Most lectures will consist of a theoretical component that will then be compared to recent experimental data (case studies) in the literature. The course begins with a series of introductory lectures that describes the normal and lateral forces acting at the atomic scale. The following discussions include experimental techniques in high resolution force spectroscopy, atomistic aspects of adhesion, nanoindentation, molecular details of fracture, chemical force microscopy, elasticity of single macromolecular chains, intermolecular interactions in polymers, dynamic force spectroscopy, biomolecular bond strength measurements, and molecular motors.

Subject:
Biology
Chemistry
Genetics
Life Science
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Ortiz, Christine
Date Added:
01/01/2007
Quantitative Genomics, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Subject assesses the relationships between sequence, structure, and function in complex biological networks as well as progress in realistic modeling of quantitative, comprehensive functional-genomics analyses. Topics include: algorithmic, statistical, database, and simulation approaches; and practical applications to biotechnology, drug discovery, and genetic engineering. Future opportunities and current limitations critically assessed. Problem sets and project emphasize creative, hands-on analyses using these concepts.

Subject:
Biology
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Berwick, Robert
Kho, Alvin
Kohane, Isaac
Mirny, Leonid
Date Added:
01/01/2005
Sophisticated Survival Skills of Simple Microorganisms, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course, we will discuss the microbial physiology and genetics of stress responses in aquatic ecosystems, astrobiology, bacterial pathogenesis and other environments. We will learn about classical and novel methods utilized by researchers to uncover bacterial mechanisms induced under both general and environment-specific stresses. Finally, we will compare and contrast models for bacterial stress responses to gain an understanding of distinct mechanisms of survival and of why there are differences among bacterial genera.

Subject:
Biology
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Dolberry, Adrienne
Date Added:
01/01/2008
Special Topics: Genetics, Neurobiology, and Pathophysiology of Psychiatric Disorders, Fall 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" An opportunity for graduate study of advanced subjects in Brain and Cognitive Sciences not included in other subject listings. The key topics covered in this course are Bipolar Disorder, Psychosis, Schizophrenia, Genetics of Psychiatric Disorder, DISC1, Ca++ Signaling, Neurogenesis and Depression, Lithium and GSK3 Hypothesis, Behavioral Assays, CREB in Addiction and Depressive Behaviors, The GABA System-I, The GABA System-II, The Glutamate Hypothesis of Schizophrenia, The Dopamine Pathway and DARPP32."

Subject:
Biology
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Scolnick, Edward
Tsai, Li-Huei
Date Added:
01/01/2008
The X in Sex: A Genetic, Medical, and Evolutionary View of the X Chromosome, Fall 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This course will explore a diverse collection of striking biological phenomena associated with the X chromosome. We will examine the genetic basis and significance of several X-linked mutations. We will also discuss why men are more likely than women to display X-linked traits. We will look at the different mechanisms by which X chromosome gene expression is equalized in mammals, flies, and worms and how these mechanisms can yield unusual phenotypes. Throughout our discussions of the X chromosome we will use both recent and classic primary research papers to learn about this chromosome's fascinating biology. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching."

Subject:
Biology
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Mueller, Jacob
Date Added:
01/01/2009