Updating search results...

Search Resources

115 Results

View
Selected filters:
  • biology
Cell Biology
Unrestricted Use
CC BY
Rating
0.0 stars

This course will present the student with a detailed overview of a cell's main components and functions. The course is roughly organized into four major areas: the cell membrane, cell nucleus, cell cycle, and cell interior. The student will approach most of these topics straightforwardly, from a molecular and structural point of view. Upon completion of this course, the student will be able to: explain what a eukaryotic cell is, identify the components of the cell, and describe how a cell functions; explain how cell membranes are formed; identify the general mechanisms of transport across cell membranes; list the different ways in which cells communicate with one another--specifically, via signaling pathways; define what the extracellular matrix is composed of in different cells and how the extracellular matrix is involved in forming structures in specific tissues; list the components of the cell's cytoskeleton and explain how the cytoskeleton is formed and how it directs cell movements; explain the fundamentals of gene expression and describe how gene expression is regulated at the protein level; define and explain the major cellular events involved in mitosis and cytokinesis; identify the major cellular events that occur during meiosis; describe the eukaryotic cell cycle and identify the events that need to occur during each phase of the cell cycle; identify all of the major organelles in eukaryotic cells and their respective major functions. (Biology 301)

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
10/24/2019
Cell Biology, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Biology of cells of higher organisms: structure, function, and biosynthesis of cellular membranes and organelles; cell growth and oncogenic transformation; transport, receptors and cell signaling; the cytoskeleton, the extracellular matrix, and cell movements; chromatin structure and RNA synthesis.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Orr-Weaver, Terry
Date Added:
01/01/2007
Cell Biology: Structure and Functions of the Nucleus, Spring 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The goal of this course is to teach both the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Lectures and class discussions will cover the background and fundamental findings in a particular area of nuclear cell biology. The assigned readings will provide concrete examples of the experimental approaches and logic used to establish these findings. Some examples of topics include genome and systems biology, transcription, and gene expression.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Sharp, Phillip
Young, Richard
Date Added:
01/01/2010
Cellular Garbage Disposal: Misfolded Proteins in Normal Biology and Human Disease, Fall 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The endoplasmic reticulum (ER) orchestrates different cellular processes by which proteins are synthesized, correctly folded, modified and ultimately transported to their final destinations. As part of this crucial biosynthetic process, proteins that are not properly folded and consequently detrimental to normal cellular function are constantly generated. A common signature of many neurodegenerative diseases, including Alzheimer's and Parkinson's, is accumulation and deposition of misfolded proteins that arise when the ability of cells to deal with the burden of misfolded proteins is compromised. In this course, we will explore how the ER quality control machinery ensures that only properly assembled proteins exit the ER while distinguishing between nascent proteins en route to their biologically active folded state from those that are terminally misfolded.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Sanyal, Sumana
Date Added:
01/01/2011
Cognitive and Behavioral Genetics, Spring 2001
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications.

Subject:
Biology
Genetics
Life Science
Psychology
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Nedivi, Elly
Pinker, Steve
Date Added:
01/01/2001
Computational Functional Genomics, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Study and discussion of computational approaches and algorithms for contemporary problems in functional genomics. Topics include DNA chip design, experimental data normalization, expression data representation standards, proteomics, gene clustering, self-organizing maps, Boolean networks, statistical graph models, Bayesian network models, continuous dynamic models, statistical metrics for model validation, model elaboration, experiment planning, and the computational complexity of functional genomics problems.

Subject:
Applied Science
Biology
Computer Science
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Gifford, David
Jaakkola, Tommi Sakari
Date Added:
01/01/2005
Concept-Centered Teaching, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Used for students receiving Advanced Placement credit and transfer credit. Program of study or research to be arranged with a Department faculty member. Written report required. Permission of Department required.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kosinski-Collins, Melissa
Date Added:
01/01/2006
Developmental Biology
Unrestricted Use
CC BY
Rating
0.0 stars

In this course, the student will learn about the field of developmental biology from its origins to the present day. The course will take a look at historical experiments as well as modern techniques and the mechanisms of development. The student will follow a variety of metazoan organisms from their start at fertilization through the stages of their development and on to entire organismal and post-embryonic development, learning along the way about the molecular and genetic regulations involved in these processes. (Biology 310)

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
10/24/2019
Developmental Biology, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The principles involved in morphogenesis and the determination of complex cellular patterns are examined using examples from animal systems in which the tools of genetics, molecular biology and cell biology have been applied to reveal mechanism. This graduate and advanced undergraduate level lecture and literature discussion course covers the current understanding of the molecular mechanisms that regulate animal development. Evolutionary mechanisms are emphasized as well as the discussion of relevant diseases. Vertebrate (mouse, chick, frog, fish) and invertebrate (fly, worm) models are covered. Specific topics include formation of early body plan, cell type determination, organogenesis, morphogenesis, stem cells, cloning, and issues in human development.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Constantine-Paton, Martha
Sive, Hazel
Date Added:
01/01/2005
Developmental Neurobiology, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Considers molecular control of neural specification, formation of neuronal connections, construction of neural systems, and the contributions of experience to shaping brain structure and function. Topics include: neural induction and pattern formation, cell lineage and fate determination, neuronal migration, axon guidance, synapse formation and stabilization, activity-dependent development and critical periods, development of behavior.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Nedivi, Elly
Date Added:
01/01/2005