An openly licensed applied calculus textbook, covering derivatives, integrals, and an intro …
An openly licensed applied calculus textbook, covering derivatives, integrals, and an intro to multivariable calculus. This book is heavily remixed from Dale Hoffman's Contemporary Calculus textbook, and retains the same conceptual focus from that text.
This course begins with a review of algebra specifically designed to help …
This course begins with a review of algebra specifically designed to help and prepare the student for the study of calculus, and continues with discussion of functions, graphs, limits, continuity, and derivatives. The appendix provides a large collection of reference facts, geometry, and trigonometry that will assist in solving calculus problems long after the course is over. Upon successful completion of this course, the student will be able to: calculate or estimate limits of functions given by formulas, graphs, or tables by using properties of limits and LĺÎĺ_ĺĚĺ_hopitalĺÎĺ_ĺĚĺ_s Rule; state whether a function given by a graph or formula is continuous or differentiable at a given point or on a given interval and justify the answer; calculate average and instantaneous rates of change in context, and state the meaning and units of the derivative for functions given graphically; calculate derivatives of polynomial, rational, common transcendental functions, and implicitly defined functions; apply the ideas and techniques of derivatives to solve maximum and minimum problems and related rate problems, and calculate slopes and rates for function given as parametric equations; find extreme values of modeling functions given by formulas or graphs; predict, construct, and interpret the shapes of graphs; solve equations using NewtonĺÎĺ_ĺĚĺ_s Method; find linear approximations to functions using differentials; festate in words the meanings of the solutions to applied problems, attaching the appropriate units to an answer; state which parts of a mathematical statement are assumptions, such as hypotheses, and which parts are conclusions. This free course may be completed online at any time. It has been developed through a partnership with the Washington State Board for Community and Technical Colleges; the Saylor Foundation has modified some WSBCTC materials. (Mathematics 005)
The Calculus I course was developed through the Ohio Department of Higher …
The Calculus I course was developed through the Ohio Department of Higher Education OER Innovation Grant. This work was completed and the course was posted in February 2019. The course is part of the Ohio Transfer Module and is also named TMM005. For more information about credit transfer between Ohio colleges and universities, please visit: www.ohiohighered.org/transfer.Team LeadJim Fowler Ohio State UniversityRita Ralph Columbus State Community CollegeContent ContributorsNela Lakos Ohio State UniversityBart Snapp Ohio State UniversityJames Talamo Ohio State UniversityXiang Yan Edison State Community CollegeLibrarianDaniel Dotson Ohio State University Review TeamThomas Needham Ohio State UniversityCarl Stitz Lakeland Community CollegeSara Rollo North Central State College
After completing this section, students should be able to do the following.Understand …
After completing this section, students should be able to do the following.Understand the derivative as a function related to the original definition of a function.Find the derivative function using the limit definition.Relate the derivative function to the derivative at a point.Explain the relationship between differentiability and continuity.Relate the graph of the function to the graph of its derivative.Determine whether a piecewise function is differentiable.
The Calculus II course was developed through the Ohio Department of Higher …
The Calculus II course was developed through the Ohio Department of Higher Education OER Innovation Grant. This work was completed and the course was posted in February 2019. The course is part of the Ohio Transfer Module and is also named TMM006. For more information about credit transfer between Ohio colleges and universities, please visit: www.ohiohighered.org/transfer.Team LeadJim Fowler Ohio State UniversityRita Ralph Columbus State Community CollegeContent ContributorsNela Lakos Ohio State UniversityBart Snapp Ohio State UniversityJames Talamo Ohio State UniversityXiang Yan Edison State Community CollegeLibrarianDaniel Dotson Ohio State University Review TeamThomas Needham Ohio State UniversityCarl Stitz Lakeland Community CollegeSara Rollo North Central State College
After completing this section, students should be able to do the following.Compute …
After completing this section, students should be able to do the following.Compute derivatives of common functions.Compute antiderivatives of common functions.Understand the relationship between derivatives and antiderivatives.Use algebra to manipulate the integrand.Evaluate indefinite and definite integrals through a change of variables.Evaluate integrals that require complicated substitutions.Recognize common patterns in substitutions.
This contemporary calculus course is the third in a three-part sequence. In …
This contemporary calculus course is the third in a three-part sequence. In this course students continue to explore the concepts, applications, and techniques of Calculus - the mathematics of change. Calculus has wide-spread application in science, economics and engineering, and is a foundation college course for further work in these areas. This is a required class for most science and mathematics majors.Login: guest_oclPassword: ocl
This course is an introduction to contemporary calculus and is the first …
This course is an introduction to contemporary calculus and is the first of a three-part sequence. In this course students explore the concepts, applications, and techniques of Calculus - the mathematics of change. Calculus has wide-spread application in science, economics and engineering, and is a foundation college course for further work in these areas. This is a required class for most science and mathematics majors.Login: guest_oclPassword: ocl
Calculus is designed for the typical two- or three-semester general calculus course, …
Calculus is designed for the typical two- or three-semester general calculus course, incorporating innovative features to enhance student learning. The book guides students through the core concepts of calculus and helps them understand how those concepts apply to their lives and the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Volume 1 covers functions, limits, derivatives, and integration
Our writing is based on three premises. First, life sciences students are …
Our writing is based on three premises. First, life sciences students are motivated by and respond well to actual data related to real life sciences problems. Second, the ultimate goal of calculus in the life sciences primarily involves modeling living systems with difference and differential equations. Understanding the concepts of derivative and integral are crucial, but the ability to compute a large array of derivatives and integrals is of secondary importance. Third, the depth of calculus for life sciences students should be comparable to that of the traditional physics and engineering calculus course; else life sciences students will be short changed and their faculty will advise them to take the 'best' (engineering) course.
Introduction to investments and corporate finance. Topics include: project and company valuation, …
Introduction to investments and corporate finance. Topics include: project and company valuation, risk and return in capital markets, the pricing of stocks and bonds, corporate financing and dividend policy, the cost of capital, and financial options. Subject provides a broad overview of both theory and practice. Restricted to Management of Technology students. Financial Management studies corporate finance and capital markets, emphasizing the financial aspects of managerial decisions. It touches on all areas of finance, including the valuation of real and financial assets, risk management and financial derivatives, the trade-off between risk and expected return, and corporate financing and dividend policy. The course draws heavily on empirical research to help guide managerial decisions.
" This is a course in how corporations make use of the …
" This is a course in how corporations make use of the insights and tools of risk management. Most courses on derivatives, futures and options, and financial engineering are taught from the viewpoint of investment bankers and traders in the securities. This course is taught from the point of view of the manufacturing corporation, the utility, the software firmŰÓany potential end-user of derivatives, but not the dealer. Most related courses focus on the extensive taxonomy of instruments and the complex models developed to price them, and on ways to exploit mispricing. While this course will make use of some of these pricing models, the focus is on how corporations use the insights and models to improve their operations, to increase the value of their real assets, or to create the financial flexibility necessary to implement their core strategy."
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.