The subject of enumerative combinatorics deals with counting the number of elements …
The subject of enumerative combinatorics deals with counting the number of elements of a finite set. For instance, the number of ways to write a positive integer n as a sum of positive integers, taking order into account, is 2n-1. We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them. This is a subject which requires little mathematical background to reach the frontiers of current research. Students will therefore have the opportunity to do original research. It might be necessary to limit enrollment.
The Elementary Math Education course was developed through the Ohio Department of Higher Education OER …
The Elementary Math Education course was developed through the Ohio Department of Higher Education OER Innovation Grant. This work was completed and the course was posted in October 2019. Team LeadBradford Findell Ohio State UniversityContent ContributorsVictor Ferdinand Ohio State UniversityHea-Jin Lee Ohio State University LimaJenny Sheldon Ohio State UniversityBart Snapp Ohio State UniversityRajeev Swami Central State UniversityRon Zielker Ohio Dominican UniversityLibrarianCarolyn Sanders Central State UniversityReview TeamAlice Taylor University of Rio Grande
This course covers elementary discrete mathematics for computer science and engineering. It …
This course covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.