Updating search results...

Search Resources

303 Results

View
Selected filters:
  • Engineering
Methods and algorithms for system design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

System design is the central topic of this course. We move beyond the methods developed in circuit design (although we shall have interest in those) and consider situations in which the functional behavior of a system is the first object under consideration.

Subject:
Electronic Technology
Engineering
Professional Studies
Material Type:
Activity/Lab
Assessment
Full Course
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
T.G.R.M. van Leuken
Date Added:
05/22/2019
Microelectronic Devices and Circuits, Fall 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" 6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits."

Subject:
Electronic Technology
Engineering
Professional Studies
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Fonstad Jr, Clifton
Date Added:
01/01/2009
Microelectronic Devices and Circuits, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" 6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and metal-on-silicon (MOS) devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits."

Subject:
Electronic Technology
Engineering
Professional Studies
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Hoyt, Judy
Kong, Jing
Sodini, Charles
del Alamo, Jes
Date Added:
01/01/2009
Modelling
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Modelling is about understanding the nature: our world, ourselves and our work. Everything that we observe has a cause (typically several) and has the effect thereof. The heart of modelling lies in identifying, understanding and quantifying these cause-and-effect relationships.

A model can be treated as a (selective) representation of a system. We create the model by defining a mapping from the system space to the model space, thus we can map system state and behaviour to model state and behaviour. By defining the inverse mapping, we may map results from the study of the model back to the system. In this course, using an overarching modelling paradigm, students will become familiar with several instances of modelling, e.g., mechanics, thermal dynamics, fluid mechanics, etc.

Subject:
Engineering
Material Type:
Assessment
Homework/Assignment
Lecture
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr. Y. Song
Date Added:
03/07/2016
Molecular Aspects of Chemical Engineering, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class covers molecular-level engineering and analysis of chemical processes. Use of chemical bonding, reactivity, and other key concepts in the design and tailoring of organic systems are discussed. Specific class topics include application and development of structure-property relationships, and descriptions of the chemical forces and structural factors that govern supramolecular and interfacial phenomena for molecular and polymeric systems.

Subject:
Chemistry
Engineering
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Hammond, Paula
Date Added:
01/01/2004
Network Representations of Complex Engineering Systems, Spring 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides a deep understanding of engineering systems at a level intended for research on complex engineering systems. It provides a review and extension of what is known about system architecture and complexity from a theoretical point of view while examining the origins of and recent developments in the field. The class considers how and where the theory has been applied, and uses key analytical methods proposed. Students examine the level of observational (qualitative and quantitative) understanding necessary for successful use of the theoretical framework for a specific engineering system. Case studies apply the theory and principles to engineering systems.

Subject:
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Magee, Christopher
Moses, Joel
Whitney, Daniel E.
Date Added:
01/01/2010
Next Generation Infrastructures
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Infrastructures for energy, water, transport, information and communications services create the conditions for livability and economic development. They are the backbone of our society. Similar to our arteries and neural systems that sustain our human bodies, most people however take infrastructures for granted. That is, until they break down or service levels go down.

In many countries around the globe infrastructures are ageing. They require substantial investments to meet the challenges of increasing population, urbanization, resource scarcity, congestion, pollution, and so on. Infrastructures are vulnerable to extreme weather events, and therewith to climate change.
Technological innovations, such as new technologies to harvest renewable energy, are one part of the solution. The other part comes from infrastructure restructuring. Market design and regulation, for example, have a high impact on the functioning and performance of infrastructures.

Subject:
Engineering
Material Type:
Case Study
Diagram/Illustration
Lecture
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Delft University of Technology
Date Added:
05/22/2019
Non Equilibrium Thermodynamics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course describes in a simple and practical way what non-equilibrium thermodynamics is and how it can contribute to engineering fields. It explains how to derive proper equations of transport from the second law of thermodynamics or the entropy production. The obtained equations are frequently more precise than used so far, and can be used to understand the waste of energy resources in central process units in the industry. The entropy balance is used to define the energy efficiency in energy conversion and create consistent thermodynamic models. It also provides a systematic method for minimizing energy losses that are connected with transport of heat, mass, charge and momentum. The entropy balance examines operation at the state of minimum entropy production and is used to propose some rules of design for energy efficient operation. For this course some knowledge of engineering thermodynamics is a prerequisite. The first and second law of thermodynamics and terms as entropy should be known before starting this course.

Subject:
Engineering
Material Type:
Lecture
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
S.H. Kjelstrup
Date Added:
02/11/2016
Non-Linear Structural Modeling
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Non-Linear Structural Modeling covers the basics of non-linearities in the Finite Element Method (FEM), considering static and stability (buckling) analyses, and practical application thereof applied to both aerospace and non-aerospace examples. Special emphasis is put on the implementation of these non-linearities in a FEM model and any issues that might arise from incorporating these

Subject:
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Ir.J.M.A.M. Hol
Date Added:
05/22/2019
Nonlinear Dynamics and Waves, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This graduate-level course provides a unified treatment of nonlinear oscillations and wave phenomena with applications to mechanical, optical, geophysical, fluid, electrical and flow-structure interaction problems. A more detailed course outline is given in the syllabus section.

Subject:
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Akylas, Triantaphyllos
Date Added:
01/01/2007
Nuclear Power Plant Dynamics and Control, January (IAP) 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to reactor dynamics including subcritical multiplication, critical operation in absence of thermal feedback effects and effects of Xenon, fuel and moderator temperature, etc. Derivation of point kinetics and dynamic period equations. Techniques for reactor control including signal validation, supervisory algorithms, model-based trajectory tracking, and rule-based control. Overview of light-water reactor startup. Lectures and demonstrations with computer simulation and the use of the MIT Research Reactor.

Subject:
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Bernard, John
Date Added:
01/01/2006
Nuclear Reactor Safety, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" Problems in nuclear engineering often involve applying knowledge from many disciplines simultaneously in achieving satisfactory solutions. The course will focus on understanding the complete nuclear reactor system including the balance of plant, support systems and resulting interdependencies affecting the overall safety of the plant and regulatory oversight. Both the Seabrook and Pilgrim nuclear plant simulators will be used as part of the educational experience to provide as realistic as possible understanding of nuclear power systems short of being at the reactor."

Subject:
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kadak, Andrew
Date Added:
01/01/2008
Numerical Computation for Mechanical Engineers, Fall 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class introduces elementary programming concepts including variable types, data structures, and flow control. After an introduction to linear algebra and probability, it covers numerical methods relevant to mechanical engineering, including approximation (interpolation, least squares and statistical regression), integration, solution of linear and nonlinear equations, ordinary differential equations, and deterministic and probabilistic approaches. Examples are drawn from mechanical engineering disciplines, in particular from robotics, dynamics, and structural analysis. Assignments require MATLAB programming.

Subject:
Applied Science
Calculus
Engineering
Information Science
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Anthony Patera
Daniel Frey
Nicholas Hadjiconstantinou
Date Added:
01/01/2012
Numerical Fluid Mechanics, Spring 2015
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to numerical methods and MATLAB®: Errors, condition numbers and roots of equations. Topics covered include Navier-Stokes; direct and iterative methods for linear systems; finite differences for elliptic, parabolic and hyperbolic equations; Fourier decomposition, error analysis and stability; high-order and compact finite-differences; finite volume methods; time marching methods; Navier-Stokes solvers; grid generation; finite volumes on complex geometries; finite element methods; spectral methods; boundary element and panel methods; turbulent flows; boundary layers; and Lagrangian coherent structures (LCSs).

Subject:
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Pierre Lermusiaux
Date Added:
01/01/2011
Observation Theory: Estimating the Unknown
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Are you an engineer, scientist or technician? Are you dealing with measurements or big data, but are you unsure about how to proceed? This is the course that teaches you how to find the best estimates of the unknown parameters from noisy observations. You will also learn how to assess the quality of your results.

TU Delft’s approach to observation theory is world leading and based on decades of experience in research and teaching in geodesy and the wider geosciences. The theory, however, can be applied to all the engineering sciences where measurements are used to estimate unknown parameters.

The course introduces a standardized approach for parameter estimation, using a functional model (relating the observations to the unknown parameters) and a stochastic model (describing the quality of the observations). Using the concepts of least squares and best linear unbiased estimation (BLUE), parameters are estimated and analyzed in terms of precision and significance.

The course ends with the concept of overall model test, to check the validity of the parameter estimation results using hypothesis testing. Emphasis is given to develop a standardized way to deal with estimation problems. Most of the course effort will be on examples and exercises from different engineering disciplines, especially in the domain of Earth Sciences.

This course is aimed towards Engineering and Earth Sciences students at Bachelor’s, Master’s and postgraduate level.

Subject:
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr. ir. Sandra Verhagen
Prof.dr.ir. R.F. Hanssen
Sami Samiei Esfahany
Date Added:
05/22/2019
Offshore Hydromechanics Part 1
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Offshore Hydromechanics includes the following modules:1. Hydrostatics, static floating stability, constant 2-D potential flow of ideal fluids, and flows in real fluids. Introduction to resistance and propulsion of ships. Review of linear regular and irregular wave theory. 2. Analytical and numerical means to determine the flow around, forces on, and motions of floating bodies in waves. 3. Higher order potential theory and inclusion of non-linear effects in ship motions. Applications to motion of moored ships and to the determination of workability. 4. Interaction between the sea and sea bottom as well as the hydrodynamic forces and especially survival loads on slender structures.

Subject:
Engineering
Hydrology
Physical Science
Material Type:
Full Course
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
de Jong, P.
Date Added:
03/02/2016
Offshore Moorings
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course treats the design of offshore mooring systems literally from the ground up: Starting with the anchor and its soils mechanics in the sea bed, via the mechanics of a single mooring line and system of lines. The course concludes by touching on other mooring concepts and the dynamic behavior of the moored object as a non-linear mechanical system.

Subject:
Engineering
Life Science
Maritime Science
Material Type:
Activity/Lab
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
S.A. Miedema
Date Added:
02/10/2016
Offshore Wind Farm Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course makes students familiar with the design of offshore wind farms in general and focuses on the foundation design in particular. The course is based on actual cases of real offshore wind farms that have been built recently or will be built in the near future.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
J. van der Tempel
Date Added:
02/11/2016
Open Government
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

How can governments become more open and transparent, while simultaneously dealing with various challenges, such as data sensitivity? How can open government data be used to improve policy making? Which technologies are available to make governments more open and to use open government data?

Governments all over the world aim to become more open and transparent in order to establish closer ties with their constituents. However, opening government involves complex challenges and poses two major areas of concerns. First, many different stakeholders are involved and there are various dependencies between them, and second, the technologies that support open government are fragmented. In addition, it is unclear how different contexts should alter the best practices for open government.

This course explores the foundations and objectives of Open Government and examines current developments, including the opening and reuse of governmental data such as the release of data by governments in America and Europe.

This course will empower you, by helping you grasp the key principles surrounding open government.

Subject:
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr. A.M.G. Zuiderwijk- van Eijk
Prof.dr.ir. M.F.W.H.A. Janssen
Date Added:
05/22/2019