Chemistry is designed to meet the scope and sequence requirements of the …
Chemistry is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning.
Chemistry: Atoms First is a peer-reviewed, openly licensed introductory textbook produced through …
Chemistry: Atoms First is a peer-reviewed, openly licensed introductory textbook produced through a collaborative publishing partnership between OpenStax and the University of Connecticut and UConn Undergraduate Student Government Association.
This title is an adaptation of the OpenStax Chemistry text and covers scope and sequence requirements of the two-semester general chemistry course. Reordered to fit an atoms first approach, this title introduces atomic and molecular structure much earlier than the traditional approach, delaying the introduction of more abstract material so students have time to acclimate to the study of chemistry. Chemistry: Atoms First also provides a basis for understanding the application of quantitative principles to the chemistry that underlies the entire course.
This course is an intensive introduction to the techniques of experimental chemistry …
This course is an intensive introduction to the techniques of experimental chemistry and gives first year students an opportunity to learn and master the basic chemistry lab techniques for carrying out experiments. Students who successfully complete the course and obtain a "Competent Chemist" (CC) or "Expert Experimentalist" (EE) rating are likely to secure opportunities for research work in a chemistry lab at MIT. Acknowledgements The laboratory manual and materials for this course were prepared by Dr. Katherine J. Franz and Dr. Kevin M. Shea with the assistance of Professors Rick L. Danheiser and Timothy M. Swager. Materials have been revised by Dr. J. Haseltine, Dr. Kevin M. Shea, Dr. Sarah A. Tabacco, Dr. Kimberly L. Berkowski, Anne M. (Gorham) Rachupka, and Dr. John J. Dolhun. WARNING NOTICE The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear the sole responsibility, liability, and risk for the implementation of such safety procedures and measures. MIT shall have no responsibility, liability, or risk for the content or implementation of any of the material presented. Legal Notice
People around the world are fascinated about the preparation of food for …
People around the world are fascinated about the preparation of food for eating. There are countless cooking books, TV shows, celebrity chefs and kitchen gadgets that make cooking an enjoyable activity for everyone. The chemistry of cooking course seeks to understand the science behind our most popular meals by studying the behavior of atoms and molecules present in food. This book is intended to give students a basic understanding of the chemistry involved in cooking such as caramelization, Maillard reaction, acid-base reactions, catalysis, and fermentation. Students will be able to use chemistry language to describe the process of cooking, apply chemistry knowledge to solve questions related to food, and ultimately create their own recipes.
This seminar will focus on three sports: swimming, cycling and running. There …
This seminar will focus on three sports: swimming, cycling and running. There will be two components to the seminar: classroom sessions and a "laboratory" in the form of a structured training program. The classroom component will introduce the students to the chemistry of their own biological system. With swimming, running and cycling as sample sports, students are encouraged to apply their knowledge to complete a triathlon shortly after the term.
" We will study the fundamental principles of classical mechanics, with a …
" We will study the fundamental principles of classical mechanics, with a modern emphasis on the qualitative structure of phase space. We will use computational ideas to formulate the principles of mechanics precisely. Expression in a computational framework encourages clear thinking and active exploration. We will consider the following topics: the Lagrangian formulation; action, variational principles, and equations of motion; Hamilton's principle; conserved quantities; rigid bodies and tops; Hamiltonian formulation and canonical equations; surfaces of section; chaos; canonical transformations and generating functions; Liouville's theorem and PoincarĚŠ integral invariants; PoincarĚŠ-Birkhoff and KAM theorems; invariant curves and cantori; nonlinear resonances; resonance overlap and transition to chaos; properties of chaotic motion. Ideas will be illustrated and supported with physical examples. We will make extensive use of computing to capture methods, for simulation, and for symbolic analysis."
" This seminar examines the history and legacy of the Cold War …
" This seminar examines the history and legacy of the Cold War on American science. It explores scientist's new political roles after World War II, ranging from elite policy makers in the nuclear age to victims of domestic anti Communism. It also examines the changing institutions in which the physical sciences and social sciences were conducted during the postwar decades, investigating possible epistemic effects on forms of knowledge. The subject closes by considering the place of science in the post-Cold War era."
This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, …
This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems.
College Physics for AP Courses is designed to engage students in their …
College Physics for AP Courses is designed to engage students in their exploration of physics and help them to relate what they learn in the classroom to their lives and to apply these concepts to the Advanced Placement test. Physics underlies much of what is happening today in other sciences and in technology, therefore the book includes interesting facts and ideas that go beyond the scope of the AP course to further student understanding. The AP Connection in each chapter directs students to the material they should focus on for the AP® exam, and what content — although interesting — is not necessarily part of the AP curriculum.
The course begins with the basics of compressible fluid dynamics, including governing …
The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear.
Wave equations for fluid and visco-elastic media. Wave-theory formulations of acoustic source …
Wave equations for fluid and visco-elastic media. Wave-theory formulations of acoustic source radiation and seismo-acoustic propagation in stratified ocean waveguides. Wavenumber Integration and Normal Mode methods for propagation in plane-stratified media. Seismo-Acoustic modeling of seabeds and ice covers. Seismic interface and surface waves in a stratified seabed. Parabolic Equation and Coupled Mode approaches to propagation in range-dependent ocean waveguides. Numerical modeling of target scattering and reverberation clutter in ocean waveguides. Ocean ambient noise modeling. Students develop propagation models using all the numerical approaches relevant to state-of-the-art acoustic research.
The theoretical frameworks of Hartree-Fock theory and density functional theory are presented …
The theoretical frameworks of Hartree-Fock theory and density functional theory are presented as approximate methods to solve the many-electron problem. A variety of ways to incorporate electron correlation are discussed. The application of these techniques to calculate the reactivity and spectroscopic properties of chemical systems, in addition to the thermodynamics and kinetics of chemical processes, is emphasized. This course also focuses on cutting edge methods to sample complex hypersurfaces, for reactions in liquids, catalysts and biological systems.
"Concept Development Studies in Chemistry" is an on-line textbook for an Introductory …
"Concept Development Studies in Chemistry" is an on-line textbook for an Introductory General Chemistry course. Each module develops a central concept in Chemistry from experimental observations and inductive reasoning. This approach complements an interactive or active learning teaching approach.
For a semester-length course, all seven chapters can be covered. For a …
For a semester-length course, all seven chapters can be covered. For a shorter course, the book is designed so that chapters 1, 2, and 5 are the only ones that are required for continuity; any of the others can be included or omitted at the instructors discretion, with the only constraint being that chapter 6 requires chapter 4.
Thermal backgrounds in space. Cosmological principle and its consequences: Newtonian cosmology and …
Thermal backgrounds in space. Cosmological principle and its consequences: Newtonian cosmology and types of "universes"; survey of relativistic cosmology; horizons. Overview of evolution in cosmology; radiation and element synthesis; physical models of the "early stages." Formation of large-scale structure to variability of physical laws. First and last states. Some knowledge of relativity expected. 8.962 recommended though not required. This course provides an overview of astrophysical cosmology with emphasis on the Cosmic Microwave Background (CMB) radiation, galaxies and related phenomena at high redshift, and cosmic structure formation. Additional topics include cosmic inflation, nucleosynthesis and baryosynthesis, quasar (QSO) absorption lines, and gamma-ray bursts. Some background in general relativity is assumed.
You are a part of a collegewide effort to increase access to …
You are a part of a collegewide effort to increase access to education and empower students through "open pedagogy." Open pedagogy is a "free access" educational practice that places you - the student - at the center of your own learning process in a more engaging, collaborative learning environment. The ultimate purpose of this effort is to achieve greater social justice in our community in which the work can be freely shared with the broader community. This is a renewable assignment that is designed to enable you to become an agent of change in your community through the framework of the United Nations Sustainable Development Goals (SDGs). For this work, you will integrate the disciplines of Spanish and (organic) chemistry to achieve SDG #12, which is responsible consumption and production.
A series of presentations on an advanced topic in the field of …
A series of presentations on an advanced topic in the field of geology by the visiting William Otis Crosby lecturer. The Crosby lectureship is awarded to a distinguished international scientist each year to introduce new scientific perspectives to the MIT community. Subject content and structure vary from year to year.
" This course covers the following topics: X-ray diffraction: symmetry, space groups, …
" This course covers the following topics: X-ray diffraction: symmetry, space groups, geometry of diffraction, structure factors, phase problem, direct methods, Patterson methods, electron density maps, structure refinement, how to grow good crystals, powder methods, limits of X-ray diffraction methods, and structure data bases."
" This course in crystal structure refinement examines the practical aspects of …
" This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and inorganic molecules."
You are a part of a collegewide effort to increase access to …
You are a part of a collegewide effort to increase access to education and empower students through "open pedagogy." Open pedagogy is a "free access" educational practice that places you - the student - at the center of your own learning process in a more engaging, collaborative learning environment. The ultimate purpose of this effort is to achieve greater social justice in our community in which the work can be freely shared with the broader community. This is a renewable assignment that is designed to enable you to become an agent of change in your community through the framework of the United Nations Sustainable Development Goals (SDGs). For this work, you will integrate the disciplines of Spanish and (organic) chemistry to achieve SDG #12, which is responsible consumption and production.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.