This course teaches simple reasoning techniques for complex phenomena: divide and conquer, …
This course teaches simple reasoning techniques for complex phenomena: divide and conquer, dimensional analysis, extreme cases, continuity, scaling, successive approximation, balancing, cheap calculus, and symmetry. Applications are drawn from the physical and biological sciences, mathematics, and engineering. Examples include bird and machine flight, neuron biophysics, weather, prime numbers, and animal locomotion. Emphasis is on low-cost experiments to test ideas and on fostering curiosity about phenomena in the world.
" This course covers the following topics: X-ray diffraction: symmetry, space groups, …
" This course covers the following topics: X-ray diffraction: symmetry, space groups, geometry of diffraction, structure factors, phase problem, direct methods, Patterson methods, electron density maps, structure refinement, how to grow good crystals, powder methods, limits of X-ray diffraction methods, and structure data bases."
The Elementary Math Education course was developed through the Ohio Department of Higher Education OER …
The Elementary Math Education course was developed through the Ohio Department of Higher Education OER Innovation Grant. This work was completed and the course was posted in October 2019. Team LeadBradford Findell Ohio State UniversityContent ContributorsVictor Ferdinand Ohio State UniversityHea-Jin Lee Ohio State University LimaJenny Sheldon Ohio State UniversityBart Snapp Ohio State UniversityRajeev Swami Central State UniversityRon Zielker Ohio Dominican UniversityLibrarianCarolyn Sanders Central State UniversityReview TeamAlice Taylor University of Rio Grande
This course covers the mathematical techniques necessary for understanding of materials science …
This course covers the mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from the materials science and engineering core courses (3.012 and 3.014) to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, and fourier analysis. Users may find additional or updated materials at Professor Carter's 3.016 course Web site.
First term of a theoretical treatment of the physics of solids. Concept …
First term of a theoretical treatment of the physics of solids. Concept of elementary excitations. Symmetry: translational, rotational, and time-reversal invariances: theory of representations. Energy bands: APW, OPW, pseudopotential and LCAO schemes. Survey of electronic structure of metals, semimetals, semiconductors, and insulators. Excitons. Critical points. Response functions. Interactions in the electron gas.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.