Updating search results...

Biology

305 affiliated resources

Search Resources

View
Selected filters:
Directed Evolution: Engineering Biocatalysts, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Enzymes, nature's catalysts, are remarkable biomolecules capable of extraordinary specificity and selectivity. Directed evolution has been used to produce enzymes with many unique properties, including altered substrate specificity, thermal stability, organic solvent resistance, and enantioselectivity--selectivity of one stereoisomer over another. The technique of directed evolution comprises two essential steps: mutagenesis of the gene encoding the enzyme to produce a library of variants, and selection of a particular variant based on its desirable catalytic properties. In this course we will examine what kinds of enzymes are worth evolving and the strategies used for library generation and enzyme selection. We will focus on those enzymes that are used in the synthesis of drugs and in biotechnological applications. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Love, Kerry
Date Added:
01/01/2008
Environmental Biology
Unrestricted Use
CC BY
Rating
0.0 stars

This open textbook covers the most salient environmental issues, from a biological perspective. The text is designed for an introductory-level college science course. Topics include the fundamentals of ecology, biodiversity, pollution, climate change, food production, and human population growth.

Subject:
Applied Science
Biology
Environmental Science
Life Science
Material Type:
Textbook
Provider:
OpenOregon
Author:
Alexandra Geddes
Jonathan Tomkin
Kamala Doršner
Matthew R. Fisher
OpenStax
Tom Theis
Date Added:
01/01/2017
Environmental Justice, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Examines theories and practice of environmental justice, concerns about race, poverty, and the environment in both domestic and international contexts, exploring and critically analyzing philosophies, frameworks, and strategies underlying environmental justice movements. Examines case studies of environmental injustices, including: distribution of environmental quality and health, unequal enforcement of regulations, unequal access to resources to respond to environmental problems, and the broader political economy of decision-making around environmental issues. Explores how environmental justice movements relate to broader sustainable development goals and strategies. This class explores the foundations of the environmental justice movement, current and emerging issues, and the application of environmental justice analysis to environmental policy and planning. It examines claims made by diverse groups along with the policy and civil society responses that address perceived inequity and injustice. While focused mainly on the United States, international issues and perspectives are also considered.

Subject:
Anthropology
Biology
Ecology
Life Science
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Carmin, JoAnn
Date Added:
01/01/2004
Environmental Microbiology, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A general introduction to the diverse roles of microorganisms in natural and artificial environments. Topics include: cellular architecture, energetics, and growth; evolution and gene flow; population and community dynamics; air, water, and soil microbiology; biogeochemical cycling; and microorganisms in biodeterioration, bioremediation, and pest control.

Subject:
Applied Science
Architecture and Design
Biology
Environmental Science
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Polz, Martin
Date Added:
01/01/2004
Evolutionary Psychology, Spring 1999
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Current research on the evolution and development of cognition and affect, including intuitive physics, biology, and psychology, language, emotions sexuality, social relations.

Subject:
Biology
Life Science
Psychology
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Pinker, Steven
Date Added:
01/01/1999
Evolution of the Immune System, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Seminar covering topics of current interest in biology. Includes reading and analysis of research papers and student presentations. Contact Biology Education Office for topics.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Danilova, Nadia
Date Added:
01/01/2005
Experimental Biology & Communication, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

7.02 and 7.021 require simultaneous registration. Application of experimental techniques in biochemistry, microbiology, and cell biology. Emphasizes integrating factual knowledge with understanding the design of experiments and data analysis to prepare the students for research projects. Instruction and practice in written communication provided.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Schneider, Katherine
Date Added:
01/01/2005
Experimental Biology - Communications Intensive, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is the scientific communications portion of course 7.02, Experimental Biology and Communication. Students develop their skills as writers of scientific research, skills that also contribute to the learning of the 7.02 course materials. Through in class and out of class writing exercises, students explore the genre of the research article and its components while developing an understanding of the materials covered in the 7.02 laboratory.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kelley, Nicole
Lerner, Neal
Ogren-Balkema, Marilee
Pepper, Karen
Date Added:
01/01/2005
Experimental Microbial Genetics, Fall 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" In this class, students engage in independent research projects to probe various aspects of the physiology of the bacteriumĺĘPseudomonas aeruginosa PA14, an opportunistic pathogen isolated from the lungs of cystic fibrosis patients. Students use molecular genetics to examine survival in stationary phase, antibiotic resistance, phase variation, toxin production, and secondary metabolite production. Projects aim to discover the molecular basis for these processes using both classical and cutting-edge techniques. These include plasmid manipulation, genetic complementation, mutagenesis, PCR, DNA sequencing, enzyme assays, and gene expression studies. Instruction and practice in written and oral communication are also emphasized. WARNING NOTICE The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear the sole responsibility, liability, and risk for the implementation of such safety procedures and measures. MIT shall have no responsibility, liability, or risk for the content or implementation of any of the material presented. Legal Notice "

Subject:
Biology
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Croal, Laura
Laub, Michael
Melvold, Janis
Newman, Dianne
Date Added:
01/01/2008
Experimental Molecular Biology: Biotechnology II, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Laboratory uses yeast as an experimental system to study fundamental problems in understanding cell cycle and chromosome segregation. Experimental work combines genetic approaches with the tools of molecular and cell biology to identify and characterize novel genes that act on these processes. Instruction and practice in written and oral communication provided.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
01/01/2005
Experimental Molecular Neurobiology, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Designed for students without previous experience in techniques of cellular and molecular biology, this class teaches basic experimental techniques in cellular and molecular neurobiology. Experimental approaches covered include tissue culture of neuronal cell lines, dissection and culture of brain cells, DNA manipulation, synaptic protein analysis, immunocytochemistry, and fluorescent microscopy.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Hayashi, Yasunori
Date Added:
01/01/2006
Fields, Forces and Flows in Biological Systems, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces the basic driving forces for electric current, fluid flow, and mass transport, plus their application to a variety of biological systems. Basic mathematical and engineering tools will be introduced, in the context of biology and physiology. Various electrokinetic phenomena are also considered as an example of coupled nature of chemical-electro-mechanical driving forces. Applications include transport in biological tissues and across membranes, manipulation of cells and biomolecules, and microfluidics.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Han, Jongyoon (Jay)
Date Added:
01/01/2007
Food, Health & Race: Reduced Inequalities
Unrestricted Use
CC BY
Rating
0.0 stars

Learning Outcomes:
◦ Biology: Identify the structure and functions of macro-molecules important to living things
◦ Sociology: Identify components of culture and understand how structural inequalities impact individuals
◦ Biology: Analyze and interpret experimental results to reinforce biological principles
◦ Sociology: students will understand how social factors contribute to disparate health outcomes
◦ Biology: Apply basic mechanisms of heredity to predict inheritance of traits.
◦ Sociology: Students will gain a practical understanding of race as a social construct.

Subject:
Biology
Life Science
Social Science
Sociology
Material Type:
Activity/Lab
Assessment
Homework/Assignment
Provider:
Montgomery College Open Pedagogy
Author:
Dr. Katya Salmi
Dr. Vedham Karpakakunjaram
Date Added:
10/23/2019
Foundations of Algorithms and Computational Techniques in Systems Biology, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This subject describes and illustrates computational approaches to solving problems in systems biology. A series of case-studies will be explored that demonstrate how an effective match between the statement of a biological problem and the selection of an appropriate algorithm or computational technique can lead to fundamental advances. The subject will cover several discrete and numerical algorithms used in simulation, feature extraction, and optimization for molecular, network, and systems models in biology.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Tidor, Bruce
Date Added:
01/01/2006
Foundations of Computational and Systems Biology, Spring 2014
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to computational biology emphasizing the fundamentals of nucleic acid and protein sequence and structural analysis; it also includes an introduction to the analysis of complex biological systems. Topics covered in the course include principles and methods used for sequence alignment, motif finding, structural modeling, structure prediction and network modeling, as well as currently emerging research areas.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Burge, Christopher
Fraenkel, Ernest
Gifford, David
Date Added:
01/01/2014
The Fountain of Life: From Dolly to Customized Embryonic Stem Cells, Fall 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" During development, the genetic content of each cell remains, with a few exceptions, identical to that of the zygote. Most differentiated cells therefore retain all of the genetic information necessary to generate an entire organism. It was through pioneering technology of somatic cell nuclear transfer (SCNT) that this concept was experimentally proven. Only 10 years ago the sheep Dolly was the first mammal to be cloned from an adult organism, demonstrating that the differentiated state of a mammalian cell can be fully reversible to a pluripotent embryonic state. A key conclusion from these experiments was that the difference between pluripotent cells such as embryonic stem (ES) cells and unipotent differentiated cells is solely a consequence of reversible changes. These changes, which have proved to involve reversible alterations to both DNA and to proteins that bind DNA, are known as epigenetic, to distinguish them from genetic alterations to DNA sequence. In this course we will explore such epigenetic changes and study different approaches that can return a differentiated cell to an embryonic state in a process referred to as epigenetic reprogramming, which will ultimately allow generation of patient-specific stem cells and application to regenerative therapy. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching."

Subject:
Biology
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Meissner, Alexander
Date Added:
01/01/2007
Fracture and Fatigue, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Linear elastic and elastic-plastic fracture mechanics. Experimental methods. Microstructural effects on fracture in metals, ceramics, polymers, thin films, biological materials and composites. Toughening mechanisms. Crack growth resistance and creep fracture. Interface fracture mechanics. Fatigue damage and dislocation substructures in single crystals. Stress- and strain-life approach to fatigue. Fatigue crack growth models and mechanisms. Variable amplitude fatigue. Corrosion fatigue. Case studies of fracture and fatigue in structural, bioimplant, and microelectronic components.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Suresh, S. (Subra)
Date Added:
01/01/2003
Freshman Seminar: Structural Basis of Genetic Material: Nucleic Acids, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Since the discovery of the structure of the DNA double helix in 1953 by Watson and Crick, the information on detailed molecular structures of DNA and RNA, namely, the foundation of genetic material, has expanded rapidly. This discovery is the beginning of the "Big Bang" of molecular biology and biotechnology. In this seminar, students discuss, from a historical perspective and current developments, the importance of pursuing the detailed structural basis of genetic materials.

Subject:
Biology
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Zhang, Shuguang
Date Added:
01/01/2005
Freshman Seminar: The Nature of Engineering, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Are you interested in investigating how nature engineers itself? How engineers copy the shapes found in nature ("biomimetics")? This Freshman Seminar investigates why similar shapes occur in so many natural things and how physics changes the shape of nature. Why are things in nature shaped the way they are? How do birds fly? Why do bird nests look the way they do? How do woodpeckers peck? Why can't trees grow taller than they are? Why is grass skinny and hollow? What is the wood science behind musical instruments? Questions such as these are the subject of biomimetic research and they have been the focus of investigation in this course for the past three years.

Subject:
Biology
Life Science
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Gibson, Lorna J.
Date Added:
01/01/2005
From Growing to Biology: Plants 1e
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Ready to find out how plants are grown and function? Take a fantastic voyage through plants. From Growing to Biology: Plants 1e brings the latest information for understanding of traditional and modern plant growing, form, and production. Topics covered in 30 chapters include concise and up-to-date ‘big picture’ infographics, student learning outcomes (SLOs), key vocabulary, assessment, as well as identification of 120 species, and more. Moreover, author Dr. G. Hacisalihoglu emphasizes on leaning concepts, binding those concepts together with visuals approach to make learning faster and more memorable.

From Growing to Biology: Plants 1e is packed full of horticultural information that is ideal for both academia and industry growers. It is basic enough that if you are just getting started learning plants, you will be able to catch up. Always remember that practice makes permanent and keep going to take your learning plant bio to new levels.

Subject:
Agriculture
Biology
Botany
Life Science
Professional Studies
Material Type:
Textbook
Author:
Gokhan Hacisalihoglu
Date Added:
04/19/2021