Introduction to statics and the mechanics of deformable solids. Emphasis on the …
Introduction to statics and the mechanics of deformable solids. Emphasis on the three basic principles of equilibrium, geometric compatibility, and material behavior. Stress and its relation to force and moment; strain and its relation to displacement; linear elasticity with thermal expansion. Failure modes. Application to simple engineering structures such as rods, shafts, beams, and trusses. Application to design. Introduction to material selection. This course provides an introduction to the mechanics of solids with applications to science and engineering. We emphasize the three essential features of all mechanics analyses, namely: (a) the geometry of the motion and/or deformation of the structure, and conditions of geometric fit, (b) the forces on and within structures and assemblages; and (c) the physical aspects of the structural system (including material properties) which quantify relations between the forces and motions/deformation.
Molecular-level engineering and analysis of chemical processes. Use of chemical bonding, reactivity, …
Molecular-level engineering and analysis of chemical processes. Use of chemical bonding, reactivity, and other key concepts in the design and tailoring of organic systems. Application and development of structure-property relationships. Descriptions of the chemical forces and structural factors that govern supramolecular and interfacial phenomena for molecular and polymeric systems. This course is an advanced subject in fluid and continuum mechanics. The course content includes kinematics, macroscopic balances for linear and angular momentum, stress tensors, creeping flows and the lubrication approximation, the boundary layer approximation, linear stability theory, and some simple turbulent flows.
Laboratory or field work in earth, atmospheric, and planetary sciences. To be …
Laboratory or field work in earth, atmospheric, and planetary sciences. To be arranged with department faculty. Consult with department Education Office. This course introduces students to the basic concepts of Medical Geology/Geochemistry. Medical Geology/Geochemistry is the study of the interaction between abundances of elements and isotopes and the health of humans and plants.
Mesoscopic physics is the area of Solid State physics that covers the …
Mesoscopic physics is the area of Solid State physics that covers the transition regime between macroscopic objects and the microscopic, atomic world. The main goal of the course is to introduce the physical concepts underlying the phenomena in this field.
Second subject of two-term sequence on modeling, analysis and control of dynamic …
Second subject of two-term sequence on modeling, analysis and control of dynamic systems. Kinematics and dynamics of mechanical systems including rigid bodies in plane motion. Linear and angular momentum principles. Impact and collision problems. Linearization about equilibrium. Free and forced vibrations. Sensors and actuators. Control of mechanical systems. Integral and derivative action, lead and lag compensators. Root-locus design methods. Frequency-domain design methods. Applications to case-studies of multi-domain systems.
Applications of physics (Newtonian, statistical, and quantum mechanics) to fundamental processes that …
Applications of physics (Newtonian, statistical, and quantum mechanics) to fundamental processes that occur in celestial objects. Includes main-sequence stars, collapsed stars (white dwarfs, neutron stars, and black holes), pulsars, supernovae, the interstellar medium, galaxies, and as time permits, active galaxies, quasars, and cosmology. Observational data discussed. No prior knowledge of astronomy is required.
"Physical metallurgy encompasses the relationships between the composition, structure, processing history and …
"Physical metallurgy encompasses the relationships between the composition, structure, processing history and properties of metallic materials. In this seminar you'll be introduced to metallurgy in a particularly "physical" way. We will do blacksmithing, metal casting, machining, and welding, using both traditional and modern methods. The seminar meets once per week for an evening laboratory session, and once per week for discussion of issues in materials science and engineering that tie in to the laboratory work. Students will begin by completing some specified projects and progress to designing and fabricating one forged and one cast piece."
This class covers molecular-level engineering and analysis of chemical processes. Use of …
This class covers molecular-level engineering and analysis of chemical processes. Use of chemical bonding, reactivity, and other key concepts in the design and tailoring of organic systems are discussed. Specific class topics include application and development of structure-property relationships, and descriptions of the chemical forces and structural factors that govern supramolecular and interfacial phenomena for molecular and polymeric systems.
This course covers all aspects of molecular biosignatures, such as their pathways …
This course covers all aspects of molecular biosignatures, such as their pathways of lipid biosynthesis, the distribution patterns of lipid biosynthetic pathways with regard to phylogeny and physiology, isotopic contents, occurrence in modern organisms and environments, diagenetic pathways, analytical techniques and the occurrence of molecular fossils through the geological record. Students analyze in depth the recent literature on chemical fossils. Lectures provide background on the subject matter. Basic knowledge of organic chemistry required. Students taking graduate version complete additional assignments.
This course covers the analysis and design at a molecular scale of …
This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces.
This course focuses on the latest scientific developments and discoveries in the …
This course focuses on the latest scientific developments and discoveries in the field of nanomechanics, the study of forces and motion on extremely tiny (10-9 m) areas of synthetic and biological materials and structures. At this level, mechanical properties are intimately related to chemistry, physics, and quantum mechanics. Most lectures will consist of a theoretical component that will then be compared to recent experimental data (case studies) in the literature. The course begins with a series of introductory lectures that describes the normal and lateral forces acting at the atomic scale. The following discussions include experimental techniques in high resolution force spectroscopy, atomistic aspects of adhesion, nanoindentation, molecular details of fracture, chemical force microscopy, elasticity of single macromolecular chains, intermolecular interactions in polymers, dynamic force spectroscopy, biomolecular bond strength measurements, and molecular motors.
Parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming …
Parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology.
This graduate level course presents theories, methodologies, and applications of seismic imaging …
This graduate level course presents theories, methodologies, and applications of seismic imaging for solving the shallow near-surface (0 - 500 m) effects on the seismic data processing for oil and gas exploration on land. It introduces both conventional and advanced imaging technologies that have been developed in academia and the seismic industry.
This course is intended to introduce the student to the concepts and …
This course is intended to introduce the student to the concepts and methods of transport theory needed in neutron science applications. This course is a foundational study of the effects of multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department. Stochastic and deterministic simulation techniques will be introduced to the students.
This course introduces fundamental properties of the neutron. It covers reactions induced …
This course introduces fundamental properties of the neutron. It covers reactions induced by neutrons, nuclear fission, slowing down of neutrons in infinite media, diffusion theory, the few-group approximation, point kinetics, and fission-product poisoning. It emphasizes the nuclear physics bases of reactor design and its relationship to reactor engineering problems.
This course is designed for graduate students with an interest in using …
This course is designed for graduate students with an interest in using primary research literature to discuss and learn about current research around non-conventional light stable isotope geochemistry.
Introduction to the theory and phenomenology of nonlinear dynamics and chaos in …
Introduction to the theory and phenomenology of nonlinear dynamics and chaos in dissipative systems. Forced and parametric oscillators. Phase space. Periodic, quasiperiodic, and aperiodic flows. Sensitivity to initial conditions and strange attractors. Lorenz attractor. Period doubling, intermittency, and quasiperiodicity. Scaling and universality. Analysis of experimental data: Fourier transforms, Poincar, sections, fractal dimension, and Lyapunov exponents. Applications drawn from fluid dynamics, physics, geophysics, and chemistry.
This capstone course is a group design project involving integration of nuclear …
This capstone course is a group design project involving integration of nuclear physics, particle transport, control, heat transfer, safety, instrumentation, materials, environmental impact, and economic optimization. It provides opportunities to synthesize knowledge acquired in nuclear and non-nuclear subjects and apply this knowledge to practical problems of current interest in nuclear applications design. Each year, the class takes on a different design project; this year, the project is a power plant design that ties together the creation of emission-free electricity with carbon sequestration and fossil fuel displacement. Students taking graduate version complete additional assignments.This course is an elective subject in MIT's undergraduate Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.
The Ocean Health Index is a new, comprehensive measure of the ocean’s …
The Ocean Health Index is a new, comprehensive measure of the ocean’s overall condition – one that treats people and nature as integrated parts of a healthy system. The ocean touches nearly every aspect of our lives – making it essential to the economic, social, and ecological well-being of everyone, everywhere. Evaluated globally and by country, the Ocean Health Index presents 10 public goals that represent the wide range of benefits that a healthy ocean provides to people. Each country’s overall score is the average of its 10 goal scores. Overall scores and individual goal scores are directly comparable between all countries. All scores range from 0 to 100.
Part 2 of offshore hydromechanics (OE4630) involves the linear theory of calculating …
Part 2 of offshore hydromechanics (OE4630) involves the linear theory of calculating 1st order motions of floating structures in waves and all relevant subjects such as the concept of RAOs, response spectra and downtime/workability analysis.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.