Updating search results...

# 43 Results

View
Selected filters:
• probability
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This textbook is part of the OpenIntro Statistics series and offers complete coverage of the high school AP Statistics curriculum. Real data and plenty of inline examples and exercises make this an engaging and readable book. Links to lecture slides, video overviews, calculator tutorials, and video solutions to selected end of chapter exercises make this an ideal choice for any high school or Community College teacher. In fact, Portland Community College recently adopted this textbook for its Introductory Statistics course, and it estimates that this will save their students \$250,000 per year. Find out more at: openintro.org/ahss

View our video tutorials here:
openintro.org/casio
openintro.org/TI

Subject:
Mathematics
Statistics and Probability
Material Type:
Textbook
Provider:
OpenIntro
Author:
Christopher Barr
David Diez
Leah Dorazio
Mine Cetinkaya-Rundel
05/22/2019
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The applets in this section of Statistical Java allow you to see how the Central Limit Theorem works. The main page gives the characteristics of five non-normal distributions (Bernoulli, Poisson, Exponential, U-shaped, and Uniform).

Subject:
Mathematics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Provider Set:
Causeweb.org
Author:
Anderson-Cook, C.
C. Anderson-Cook
Dorai-Raj, S.
Robinson, T.
S. Dorai-Raj
T. Robinson
05/23/2019
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The applets in this section allow you to see how different bivariate data look under different correlation structures. The Movie applet either creates data for a particular correlation or animates a multitude data sets ranging correlations from -1 to 1.

Subject:
Mathematics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Provider Set:
Causeweb.org
Author:
Anderson-Cook, C.
C. Anderson-Cook
Dorai-Raj, S.
Robinson, T.
S. Dorai-Raj
T. Robinson
05/23/2019
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Discrete stochastic processes are essentially probabilistic systems that evolve in time via random changes occurring at discrete fixed or random intervals. This course aims to help students acquire both the mathematical principles and the intuition necessary to create, analyze, and understand insightful models for a broad range of these processes. The range of areas for which discrete stochastic-process models are useful is constantly expanding, and includes many applications in engineering, physics, biology, operations research and finance.

Subject:
Finance
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Gallager, Robert
01/01/2011
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

The Elementary Math Education&nbsp;course&nbsp;was&nbsp;developed through the Ohio Department of Higher Education OER Innovation Grant. This work was completed and the course was posted in October 2019.&nbsp;Team LeadBradford Findell &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Ohio State UniversityContent ContributorsVictor Ferdinand&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Ohio State UniversityHea-Jin Lee &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Ohio State University LimaJenny Sheldon &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Ohio State UniversityBart Snapp &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Ohio State UniversityRajeev Swami &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Central State UniversityRon Zielker &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Ohio Dominican UniversityLibrarianCarolyn Sanders &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Central State UniversityReview TeamAlice Taylor &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; University of Rio Grande

Subject:
Education
Elementary Education
Mathematics
Material Type:
Full Course
Provider:
Ohio Open Ed Collaborative
05/07/2021
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars
Rating
0.0 stars
Subject:
Elementary Education
Mathematics
Material Type:
Module
Author:
OER Librarian
05/07/2021
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course emphasizes three methodologies - reliability and probabilistic risk assessment (RPRA), decision analysis (DA), and cost-benefit analysis (CBA). In this class, the issues of interest are: the risks associated with large engineering projects such as nuclear power reactors, the International Space Station, and critical infrastructures; the development of new products; the design of processes and operations with environmental externalities; and infrastructure renewal projects.

Subject:
Applied Science
Environmental Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Apostolakis, George
01/01/2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The applet in this section allows you see how probabilities are determined from the exponential distribution. The user determines the mean of the distribution and the limits of probability. Three different probability expressions are available.

Subject:
Mathematics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Provider Set:
Causeweb.org
Author:
Anderson-Cook, C.
C. Anderson-Cook
Dorai-Raj, S.
Robinson, T.
S. Dorai-Raj
T. Robinson
05/23/2019
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Continues 18.100. Roughly half the subject devoted to the theory of the Lebesgue integral with applications to probability, and half to Fourier series and Fourier integrals.

Subject:
Mathematics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Melrose, Richard B.
01/01/2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" An historical examination and analysis of the evolution and development of games and game mechanics. Topics include a large breadth of genres and types of games, including sports, game shows, games of chance, schoolyard games, board games, roleplaying games, and digital games. Students submit essays documenting research and analysis of a variety of traditional and eclectic games. Project teams required to design, develop, and thoroughly test their original games."

Subject:
Anthropology
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Fernandez-Vara, Clara
Juul, Jesper
Rusch, Doris
Tan, Philip
01/01/2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Unified theory of information with applications to computing, communications, thermodynamics, and other sciences. Digital signals and streams, codes, compression, noise, and probability. Reversible and irreversible operations. Information in biological systems. Channel capacity. Maximum-entropy formalism. Thermodynamic equilibrium, temperature. The Second Law of Thermodynamics. Quantum computation.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Lloyd, Seth
01/01/2008
Unrestricted Use
CC BY
Rating
0.0 stars

This course covers descriptive statistics, the foundation of statistics, probability and random distributions, and the relationships between various characteristics of data. Upon successful completion of the course, the student will be able to: Define the meaning of descriptive statistics and statistical inference; Distinguish between a population and a sample; Explain the purpose of measures of location, variability, and skewness; Calculate probabilities; Explain the difference between how probabilities are computed for discrete and continuous random variables; Recognize and understand discrete probability distribution functions, in general; Identify confidence intervals for means and proportions; Explain how the central limit theorem applies in inference; Calculate and interpret confidence intervals for one population average and one population proportion; Differentiate between Type I and Type II errors; Conduct and interpret hypothesis tests; Compute regression equations for data; Use regression equations to make predictions; Conduct and interpret ANOVA (Analysis of Variance). (Mathematics 121; See also: Biology 104, Computer Science 106, Economics 104, Psychology 201)

Subject:
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
The Saylor Foundation
10/24/2019
Unrestricted Use
CC BY
Rating
0.0 stars

The main goal of the course is to highlight the general assumptions and methods that underlie all statistical analysis. The purpose is to get a good understanding of the scope, and the limitations of these methods. We also want to learn as much as possible about the assumptions behind the most common methods, in order to evaluate if they apply with reasonable accuracy to a given situation. Our goal is not so much learning bread and butter techniques: these are pre-programmed in widely available and used software, so much so that a mechanical acquisition of these techniques could be quickly done "on the job". What is more challenging is the evaluation of what the results of a statistical procedure really mean, how reliable they are in given circumstances, and what their limitations are.Login: guest_oclPassword: ocl

Subject:
Mathematics
Statistics and Probability
Material Type:
Full Course
Homework/Assignment
Lecture Notes
Lesson Plan
Syllabus
Provider:
Washington State Board for Community & Technical Colleges
Provider Set:
Open Course Library
10/31/2011
Unrestricted Use
CC BY
Rating
0.0 stars

Introductory Business Statistics is designed to meet the scope and sequence requirements of the one-semester statistics course for business, economics, and related majors. Core statistical concepts and skills have been augmented with practical business examples, scenarios, and exercises. The result is a meaningful understanding of the discipline, which will serve students in their business careers and real-world experiences.

Subject:
Mathematics
Statistics and Probability
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
Alexander Holmes
Barbara Illowsky
Susan Dean
11/30/2017
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This text document lists detailed learning objectives for introductory statistics courses. Learning objectives are brief, clear statements of what learners will be able to perform at the end of a course.

Subject:
Mathematics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Provider Set:
Causeweb.org
Author:
Jeff Thompson, Pam Arroway, Roger Woodard, North Carolina State University
05/23/2019
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Mathematics explained: Here you find videos on various math topics:

Pre-university Calculus (functions, equations, differentiation and integration)
Vector calculus (preparation for mechanics and dynamics courses)
Differential equations, Calculus
Functions of several variables, Calculus
Linear Algebra
Probability and Statistics

Subject:
Mathematics
Material Type:
Lecture
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
05/22/2019
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this class, students use data and systems knowledge to build models of complex socio-technical systems for improved system design and decision-making. Students will enhance their model-building skills, through review and extension of functions of random variables, Poisson processes, and Markov processes; move from applied probability to statistics via Chi-squared t and f tests, derived as functions of random variables; and review classical statistics, hypothesis tests, regression, correlation and causation, simple data mining techniques, and Bayesian vs. classical statistics. A class project is required.

Subject:
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Frey, Daniel
01/01/2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The applets in this section allow users to see how probabilities and quantiles are determined from a Normal distribution. For calculating probabilities, set the mean, variance, and limits; for calculating quantiles, set the mean, variance, and probability.

Subject:
Mathematics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Provider Set:
Causeweb.org
Author:
C. Anderson-Cook, S. Dorai-Raj, T. Robinson, Virginia Tech Department of Statistics
05/23/2019
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Welcome to 6.041/6.431, a subject on the modeling and analysis of random phenomena and processes, including the basics of statistical inference. Nowadays, there is broad consensus that the ability to think probabilistically is a fundamental component of scientific literacy. For example: The concept of statistical significance (to be touched upon at the end of this course) is considered by the Financial Times as one of "The Ten Things Everyone Should Know About Science". A recent Scientific American article argues that statistical literacy is crucial in making health-related decisions. Finally, an article in the New York Times identifies statistical data analysis as an upcoming profession, valuable everywhere, from Google and Netflix to the Office of Management and Budget. The aim of this class is to introduce the relevant models, skills, and tools, by combining mathematics with conceptual understanding and intuition.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Bertsekas, Dimitri
Tsitsiklis, John