If you've ever spent hours renaming files or updating hundreds of spreadsheet …
If you've ever spent hours renaming files or updating hundreds of spreadsheet cells, you know how tedious tasks like these can be. But what if you could have your computer do them for you?
In Automate the Boring Stuff with Python, you'll learn how to use Python to write programs that do in minutes what would take you hours to do by hand-no prior programming experience required. Once you've mastered the basics of programming, you'll create Python programs that effortlessly perform useful and impressive feats of automation to:
Search for text in a file or across multiple files Create, update, move, and rename files and folders Search the Web and download online content Update and format data in Excel spreadsheets of any size Split, merge, watermark, and encrypt PDFs Send reminder emails and text notifications Fill out online forms
Step-by-step instructions walk you through each program, and practice projects at the end of each chapter challenge you to improve those programs and use your newfound skills to automate similar tasks.
Don't spend your time doing work a well-trained monkey could do. Even if you've never written a line of code, you can make your computer do the grunt work. Learn how in Automate the Boring Stuff with Python.
Graduate-level introduction to automatic speech recognition. Provides relevant background in acoustic theory …
Graduate-level introduction to automatic speech recognition. Provides relevant background in acoustic theory of speech production, properties of speech sounds, signal representation, acoustic modeling, pattern classification, search algorithms, stochastic modeling techniques (including hidden Markov modeling), and language modeling. Examines approaches of state-of-the-art speech recognition systems. Introduces students to the rapidly developing field of automatic speech recognition. Its content is divided into three parts. Part I deals with background material in the acoustic theory of speech production, acoustic-phonetics, and signal representation. Part II describes algorithmic aspects of speech recognition systems including pattern classification, search algorithms, stochastic modelling, and language modelling techniques. Part III compares and contrasts the various approaches to speech recognition, and describes advanced techniques used for acoustic-phonetic modelling, robust speech recognition, speaker adaptation, processing paralinguistic information, speech understanding, and multimodal processing.
Offers a foundation in the visual art practice and its critical analysis …
Offers a foundation in the visual art practice and its critical analysis for beginning architecture students. Emphasis on long-range artistic development and its analogies to architectural thinking and practice. Learn to communicate ideas and experiences through various two-dimensional, three-dimensional, and time-based media, including sculpture, installation, performance, and video. Lectures, visiting artist presentations, field trips, and readings supplement studio practice. Required of and restricted to Course 4 majors. Lab fee.
" This course provides students with a basic knowledge of structural analysis …
" This course provides students with a basic knowledge of structural analysis and design for buildings, bridges and other structures. The course emphasizes the historical development of structural form and the evolution of structural design knowledge, from Gothic cathedrals to long span suspension bridges. Students will investigate the behavior of structural systems and elements through design exercises, case studies, and load testing of models. Students will design structures using timber, masonry, steel, and concrete and will gain an appreciation of the importance of structural design today, with an emphasis on environmental impact of large scale construction."
Have you ever wondered why ventilation helps to cool down your hot …
Have you ever wondered why ventilation helps to cool down your hot chocolate? Do you know why a surfing suit keeps you warm? Why iron feels cold, while wood feels warm at room temperature? Or how air is transferred into aqueous liquids in a water treatment plant? How can we sterilize milk with the least amount of energy? Or how do we design a new cooling tower of a power plant?
Transport Phenomena addresses questions like these and many more, exploring a wide variety of applications ranging from industrial processes to daily life problems and even to bioprocesses in our own body.
In Transport Phenomena, the transport and transfer of momentum, heat and mass are studied. To understand these processes which often take place simultaneously, the underlying concepts will be covered in this course.
Study of an area of current interest in theoretical computer science. Topic …
Study of an area of current interest in theoretical computer science. Topic varies from term to term. This course is a study of Behavior of Algorithms and covers an area of current interest in theoretical computer science. The topics vary from term to term. During this term, we discuss rigorous approaches to explaining the typical performance of algorithms with a focus on the following approaches: smoothed analysis, condition numbers/parametric analysis, and subclassing inputs.
While big data infiltrates all walks of life, most firms have not …
While big data infiltrates all walks of life, most firms have not changed sufficiently to meet the challenges that come with it. In this course, you will learn how to develop a big data strategy, transform your business model and your organization.
This course will enable professionals to take their organization and their own career to the next level, regardless of their background and position.
Professionals will learn how to be in charge of big data instead of being subject to it. In particular, they will become familiar with tools to:
assess their current situation regarding potential big data-induced changes of a disruptive nature, identify their options for successfully integrating big data in their strategy, business model and organization, or if not possible, how to exit quickly with as little loss as possible, and strengthen their own position and that of their organization in our digitalized knowledge economy The course will build on the concepts of product life cycles, the business model canvas, organizational theory and digitalized management jobs (such as Chief Digital Officer or Chief Informatics Officer) to help you find the best way to deal with and benefit from big data induced changes.
This course explores the physical, ecological, technological, political, economic, and cultural implications …
This course explores the physical, ecological, technological, political, economic, and cultural implications of big plans and mega-urban landscapes in a global context. It uses local and international case studies to understand the process of making major changes to urban landscape and city fabric, and to regional landscape systems. It includes lectures by leading practitioners. The assignments consider planning and design strategies across multiple scales and time frames.
The course Bio-Inspired Design gives an overview of non-conventional mechanical approaches in …
The course Bio-Inspired Design gives an overview of non-conventional mechanical approaches in nature and shows how this knowledge can lead to more creativity in mechanical design and to better (simpler, smaller, more robust) solutions than with conventional technology. The course discusses a large number of biological organisms with smart constructions, unusual mechanisms or clever sensing and processing methods and presents a number of technical examples and designs of bio-inspired instruments and machines.
This course will introduce the student to the major concepts of biotechnology. …
This course will introduce the student to the major concepts of biotechnology. The student will discuss genetic engineering of plants and animals and the current major medical, environmental, and agricultural applications of each. There are also a variety of topics that this course will cover after ranging from nanobiotechnology to environmental biotechnology. Upon successful completion of this course, the student will be able to: identify and describe the fields of biotechnology; compare and contrast forward and reverse genetics and the way they influence biodiversity; compare and contrast systemic studies of the genome, transcriptome, and proteome; explain how genome projects are performed, and discuss the completion and the information processing in these projects; describe and explain the principles of existing gene therapies; design strategies that support genetic counseling; explain and analyze DNA fingerprints, and compare DNA fingerprints to non-DNA biometrics; describe and compare bioremediation technologies in air, water, and soil; design strategies for generating genetically modified organisms, and discuss ethical concerns; discuss emerging fields in biotechnology. (Biology 403)
Blender 3D: Noob to Pro is a product of shared effort by …
Blender 3D: Noob to Pro is a product of shared effort by numerous team members and anonymous editors. Its purpose is to teach people how to create three-dimensional computer graphics using Blender, a free software application. This book is intended to be used in conjunction with other on-line resources that complement it.
This class is the second half of an intensive survey of cognitive …
This class is the second half of an intensive survey of cognitive science for first-year graduate students. Topics include visual perception, language, memory, cognitive architecture, learning, reasoning, decision-making, and cognitive development. Topics covered are from behavioral, computational, and neural perspectives.
Design and construction of breakwaters and closure dams in estuaries and rivers. …
Design and construction of breakwaters and closure dams in estuaries and rivers. Functional requirements, determination of boundary conditions, spatial and constructional design and construction aspects of breakwaters and dams consisting of rock, sand and caissons.
There is no doubt that the quantum computer and the quantum internet …
There is no doubt that the quantum computer and the quantum internet have many profound applications, they may change the way we think about information, and they could completely change our daily life.
But how do a quantum computer and a quantum internet work? What scientific principles are behind it? What kind of software and protocols do we need for that? How can we operate a quantum computer and a quantum internet? And which disciplines of science and engineering are needed to develop a fully working system?
In a series of two MOOCs, we will take you through all layers of a quantum computer and a quantum internet. The first course will provide you with the scientific basis by explaining the first layer: the qubits. We will discuss the four types of qubits that QuTech research center at Delft University of Technology focuses on: topological qubits, Spin qubits, Trans qubits and NV Centre qubits. We will teach you the working principles of qubits and, at the same time, the working principles of a computer made of these qubits.
In the upcoming second course, we will introduce the other layers needed to build a quantum computer and a quantum internet, such as the micro-architecture, compilers, quantum error correction, repeaters and quantum algorithms.
These two courses offer you an opportunity to deepen your knowledge by continuing the journey started in our first MOOC, which focused on the applications of a quantum computer and a quantum internet.
Note that these courses offer a full overview of the layers of a quantum computer and a quantum internet, and therefore they will not go into too much detail per layer. For learners seeking to fully understand one specific topic we can recommend other courses authored by QuTech:
There is no doubt that the quantum computer and the quantum internet …
There is no doubt that the quantum computer and the quantum internet have many profound applications, they may change the way we think about information, and they could completely change our daily life.
But how do a quantum computer and a quantum internet work? What scientific principles are behind it? What kind of software and protocols do we need for a quantum computer and a quantum internet? Which disciplines of science and engineering are needed to develop these? And how can we operate a fully working system?
In this series of two courses, we take you through all layers of a quantum computer and a quantum internet. In part 1 we explained the first layer: the qubits. We introduced the most promising quantum platforms and discussed how to do quantum operations on the physical qubits. In part 2 we will introduce the other layers needed to build and operate a quantum computer and a quantum internet, such as the quantum classical interface, micro-architecture, compilers, quantum error correction, networks and protocols and quantum algorithms.
These two courses offer you an opportunity to deepen your knowledge by continuing the journey started in our first course, which focused on the applications of a quantum computer and a quantum internet.
Note that these courses offer a full overview of the layers of a quantum computer and a quantum internet, and therefore they will not go into too much detail per layer. For learners seeking to fully understand one specific topic we can recommend other courses authored by QuTech:
In the field of Quantum Internet: Quantum Cryptography In the field of topological phenomena: Topology in Condensed Matter This course is authored by experts from the QuTech research center at Delft University of Technology. In the center, scientists and engineers work together to enhance research and development in quantum technology. QuTech Academy’s aim is to inspire, share and disseminate knowledge about the latest developments in quantum technology.
The book presents a coherent theory of building information, focusing on its …
The book presents a coherent theory of building information, focusing on its representation and management in the digital era. It addresses issues such as the information explosion and the structure of analogue building representations to propose a parsimonious approach to the deployment and utilization of symbolic digital technologies like BIM.
This course addresses advanced topics in structures, exterior envelopes and contemporary production …
This course addresses advanced topics in structures, exterior envelopes and contemporary production technologies. It continues the exploration of structural elements and systems; expanding to include more complex determinant, indeterminate, long-span and high-rise systems. Some of the topics covered include reinforced concrete, steel and engineered wood design, and an introduction to tensile systems. The contemporary exterior envelope is discussed with an emphasis on the classification of systems, their performance attributes and advanced manufacturing technologies.
This course addresses advanced structures, exterior envelopes and contemporary production technologies. It …
This course addresses advanced structures, exterior envelopes and contemporary production technologies. It continues the exploration of structural elements and systems, and expands to include more complex determinante, indeterminate, long-span and high-rise systems. It covers topics such as reinforced concrete, steel and engineered wood design, and provides an introduction to tensile systems. Lectures also address the contemporary exterior envelope with an emphasis on their performance attributes and advanced manufacturing technologies.
This course offers an introduction to the history, theory, and construction of …
This course offers an introduction to the history, theory, and construction of basic structural systems as well as an introduction to energy issues in buildings. It emphasizes basic systematic and elemental behavior, principles of structural behavior, and analysis of individual structural elements and strategies for load carrying. The course also introduces fundamental energy topics including thermodynamics, psychrometrics, and comfort. It is a required class for M. Arch. students.
Concepts of building technology and experimental methods. Projects vary yearly and have …
Concepts of building technology and experimental methods. Projects vary yearly and have included design and test of strategies for daylighting, passive heating and cooling, and improved indoor air quality. Experimental methods focus on measurement and analysis of thermally driven and wind-driven airflows, lighting intensity and glare, heat flow and thermal storage, and load deformation of materials. Experiments are conducted at model and full scale and are often motivated by ongoing field work in developing countries.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.