This course is a laboratory accompaniment to 12.803, Quasi-balanced Circulations in Oceans …
This course is a laboratory accompaniment to 12.803, Quasi-balanced Circulations in Oceans and Atmospheres. The subject includes analysis of observations of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments. Student projects illustrate the basic principles of potential vorticity conservation and inversion, Rossby wave propagation, baroclinic instability, and the behavior of isolated vortices.
" This class explores the creation (and creativity) of the modern scientific …
" This class explores the creation (and creativity) of the modern scientific and cultural world through study of western Europe in the 17th century, the age of Descartes and Newton, Shakespeare, Milton and Ford. It compares period thinking to present-day debates about the scientific method, art, religion, and society. This team-taught, interdisciplinary subject draws on a wide range of literary, dramatic, historical, and scientific texts and images, and involves theatrical experimentation as well as reading, writing, researching and conversing. The primary theme of the class is to explore how England in the mid-seventeenth century became "a world turned upside down" by the new ideas and upheavals in religion, politics, and philosophy, ideas that would shape our modern world. Paying special attention to the "theatricality" of the new models and perspectives afforded by scientific experimentation, the class will read plays by Shakespeare, Tate, Brecht, Ford, Churchill, and Kushner, as well as primary and secondary texts from a wide range of disciplines. Students will also compose and perform in scenes based on that material."
A dynamically simplified solar system is constructed from online data to explore …
A dynamically simplified solar system is constructed from online data to explore the real solar system on many different scales.
The realistically scaled solar system is surprising because nothing is visible due to the presence of many different scales. That is why it is usually rescaled in animations or illustrations. This is nice but gives us a wrong sense of distances and sizes. This Demonstration is intended to show the solar system's different scales in their full glory.
Since it is hardly possible to see anything when the real scales are used, controls have been added to modify the sizes of the celestial bodies.
This book is a journey through the world of physics and cosmology, …
This book is a journey through the world of physics and cosmology, and an exploration of our role in this universe. We will address questions such as: What if the force of gravity were a little stronger? What if there were more of fewer atoms in our universe? What if Newton and not Einstein had been right? Would we still be here? Can the universe exist without us to observe it? Can chance explain the world around us, as well as us?
The purpose of this book is to phrase these questions and pursue the consequences of potential answers through rigorous scientific reasoning; in the process we will learn how the very small and the very large are interconnected, and even how we can affect events that happened six billion years ago.
Licensed CC-BY-4.0 with attribution instructions on page 2 of the document.
Table of Contents
Introduction 7 The fundamental forces 10 The force of gravity 18 What if … the force of gravity were different? 23 The electric and magnetic forces 26 The electric force 27 What if … the electric force were different? 39 The magnetic force 48 What if … the magnetic force were different? 58 The strong and weak forces 59 What if … ? 65 How do forces work? 74 The history of the universe 85 What if … ? 94 The history of our species 106 Odds 124 The building blocks of the universe 128 What if … ? 140 Dark energy 150 What if … dark matter were more interesting? 159 When you do not look…. 162 Manifestations of the wave nature of matter 169 The delayed choice experiment: Affecting the past 186 What if … ? 191 The story so far 195 Unification and our role 199 Fine-tuning? 214 The Multiverse and aliens 226 The laws of physics 234 The Anthropic Principle and Puddle Theory 237 Post mortem 249 Further reading and chapter notes 251
This is an introductory text intended for a one-year introductory course of …
This is an introductory text intended for a one-year introductory course of the type typically taken by biology majors, or for AP Physics 1 and 2. Algebra and trig are used, and there are optional calculus-based sections. My text for physical science and engineering majors is Simple Nature.
This is an introductory text intended for a one-year introductory course of …
This is an introductory text intended for a one-year introductory course of the type typically taken by biology majors, or for AP Physics 1 and 2. Algebra and trig are used, and there are optional calculus-based sections. .
Derivation of the basic MHD model from the Boltzmann equation. Discussion of …
Derivation of the basic MHD model from the Boltzmann equation. Discussion of MHD equilibria in cylindrical, toroidal, and noncircular tokamaks. Use of MHD equilibrium theory in poloidal field design. MHD stability theory including the Energy Principle, interchange instability, ballooning modes, second region of stability, and external kink modes. Emphasis on discovering configurations capable of achieving good confinement at high beta.
College-level physics course focusing on black holes. Course topics include general relativity, …
College-level physics course focusing on black holes. Course topics include general relativity, astrophysics, and elements of cosmology . Course features include selected video lectures, lecture notes, assignments, and exams.
This is an instructor's guide for an experiment to measure electrostatic force, …
This is an instructor's guide for an experiment to measure electrostatic force, using parallel plates made from two washers, insulating perf-board, and aluminum foil. Photos and detailed instructions are provided for experimental setup. SEE RELATED MATERIALS for a Java simulation by the same authors on the topic of capacitance. For an Excel spreadsheet developed specifically to accompany this experiment, see link below: MIT Physics 8.02 Open Courseware: Labs
An examination of current economic and policy issues in the electric power …
An examination of current economic and policy issues in the electric power industry, focusing on nuclear power and its fuel cycle. Introduces techniques for analyzing private and public policy alternatives, including discounted cash flow methods and other techniques in engineering economics. Application to specific problem areas, including nuclear waste management and weapons proliferation. Other topics include deregulation and restructuring in the electric power industry.
Maneuvering motions of surface and underwater vehicles. Derivation of equations of motion, …
Maneuvering motions of surface and underwater vehicles. Derivation of equations of motion, hydrodynamic coefficients. Memory effects. Linear and nonlinear forms of the equations of motion. Control surfaces modeling and design. Engine, propulsor, and transmission systems modeling and simulation during maneuvering. Stability of motion. Principles of multivariable automatic control. Optimal control, Kalman filtering, loop transfer recovery. Term project: applications chosen from autopilots for surface vehicles; towing in open seas; remotely operated vehicles.
Concepts and physical pictures behind phenomena that appear in interacting many-body systems. …
Concepts and physical pictures behind phenomena that appear in interacting many-body systems. Concentrates on path integrals, meanfield theories and a semiclassical picture of fluctuations around the meanfield state. Some correlation function and finite temperature techniques also covered.
" This course is an introduction to chemical oceanography. It describes reservoir …
" This course is an introduction to chemical oceanography. It describes reservoir models and residence time, major ion composition of seawater, inputs to and outputs from the ocean via rivers, the atmosphere, and the sea floor. Biogeochemical cycling within the oceanic water column and sediments, emphasizing the roles played by the formation, transport, and alteration of oceanic particles and the effects that these processes have on seawater composition. Cycles of carbon, nitrogen, phosphorus, oxygen, and sulfur. Uptake of anthropogenic carbon dioxide by the ocean. Material presented through lectures and student-led presentation and discussion of recent papers."
The structure of the course is designed to have students acquire a …
The structure of the course is designed to have students acquire a broad understanding of the field of Marine Chemistry; to get a feel for experimental methodologies, the results that they have generated and the theoretical insights they have yielded to date.
Provides an understanding of the distribution of organic carbon (OC) in marine …
Provides an understanding of the distribution of organic carbon (OC) in marine sediments from a global and molecular-level perspective. Surveys the mineralization and preservation of OC in the water column and within anoxic and oxic marine sediments. Topics include: OC composition, reactivity and budgets within, and fluxes through, major reservoirs; microbial recycling pathways for OC; models for OC degradation and preservation; role of anoxia in OC burial; relationships between dissolved and particulate (sinking and suspended) OC; methods for characterization of sedimentary organic matter; application of biological markers as tools in oceanography. Both structural and isotopic aspects are covered.
Introduction to the interactions between cells and surfaces of biomaterials. Surface chemistry …
Introduction to the interactions between cells and surfaces of biomaterials. Surface chemistry and physics of selected metals, polymers, and ceramics. Surface characterization methodology. Modification of biomaterials surfaces. Quantitative assays of cell behavior in culture. Biosensors and microarrays. Bulk properties of implants. Acute and chronic response to implanted biomaterials. Topics in biomimetics, drug delivery, and tissue engineering. Laboratory demonstrations.
" Here we will learn about the mechanical behavior of structures and …
" Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, fracture and fatigue of materials including crystalline and amorphous metals, semiconductors, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. We will cover special topics in mechanical behavior for material systems of your choice, with reference to current research and publications."
A survey of the mechanical behavior of rocks in natural geologic situations. …
A survey of the mechanical behavior of rocks in natural geologic situations. Topics: brief survey of field evidence of rock deformation, physics of plastic deformation in minerals, brittle fracture and sliding, and pressure-solution processes. Results of field petrologic and structural studies compared to data from experimental structural geology.
This is a calculus-based book meant for the first semester of the …
This is a calculus-based book meant for the first semester of the type of freshman survey course taken by engineering and physical science majors. A treatment of relativity is interspersed with the Newtonian mechanics, in optional sections. The book is designed so that it can be used as a drop-in replacement for the corresponding part of Simple Nature, for instructors who prefer a traditional order of topics. Simple Nature does energy before force, while Mechanics does force before energy. Simple Nature has its treatment of relativity all in a single chapter, rather than in parallel with the development of Newtonian mechanics.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.