Updating search results...

Search Resources

8 Results

View
Selected filters:
  • transcription
Analysis of Biological Networks (BE.440), Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemical and quantitative views of the interplay of multiple pathways as biological networks are emphasized. Student work will culminate in the preparation of a unique grant application in an area of biological networks.

Subject:
Biology
Chemistry
Life Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Essigmann, John
Sasisekharan, Ram
Date Added:
01/01/2004
Biology: Genetics
Read the Fine Print
Educational Use
Rating
0.0 stars

College-level course focusing on the principles of genetics. Course topics include structure and function of genes, chromosomes and genomes, biological variation, population genetics, use of genetic methods to analyze protein function, gene regulation, and inherited disease. Course features include lecture notes, assignments and solutions, and exams and solutions.

Subject:
Applied Science
Biology
Genetics
Life Science
Material Type:
Activity/Lab
Assessment
Diagram/Illustration
Full Course
Homework/Assignment
Lecture Notes
Student Guide
Syllabus
Provider:
Massachusetts Institute of Technology
Provider Set:
OpenCourseWare
Author:
Fink, Gerald
Kaiser, Chris
Mischke, Michelle
Samson, Leona
Date Added:
01/01/2004
Cell Biology: Structure and Functions of the Nucleus, Spring 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The goal of this course is to teach both the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Lectures and class discussions will cover the background and fundamental findings in a particular area of nuclear cell biology. The assigned readings will provide concrete examples of the experimental approaches and logic used to establish these findings. Some examples of topics include genome and systems biology, transcription, and gene expression.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Sharp, Phillip
Young, Richard
Date Added:
01/01/2010
Computational Functional Genomics, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Study and discussion of computational approaches and algorithms for contemporary problems in functional genomics. Topics include DNA chip design, experimental data normalization, expression data representation standards, proteomics, gene clustering, self-organizing maps, Boolean networks, statistical graph models, Bayesian network models, continuous dynamic models, statistical metrics for model validation, model elaboration, experiment planning, and the computational complexity of functional genomics problems.

Subject:
Applied Science
Biology
Computer Science
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Gifford, David
Jaakkola, Tommi Sakari
Date Added:
01/01/2005
Introduction to Biology, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
01/01/2004
Portuguese Communication Exercises
Unrestricted Use
CC BY
Rating
0.0 stars

A compilation of nearly 350 brief video clips, together with a complete Portuguese transcription and English translation of native speakers of Portuguese from various locations throughout Brazil (and some Portugal) who talk about 80 different topics.

Subject:
Arts and Humanities
Languages
Material Type:
Lesson
Provider:
University of Texas at Austin
Provider Set:
COERLL
Author:
Orlando Kelm
Date Added:
05/22/2019
Proficiency Level Exercises
Rating
0.0 stars

Mumkin offers practice materials for learners who are at a beginning, intermediate, and advanced level. Materials are grouped by difficulty level, and consists of videos in Arabic daily life followed by comprehension questions in the form of multiple choice or fill in the blank questions. Users also have the ability to read an Arabic transcription of each video. The site also provides a series of songs in Arabic that depict some aspect of contemporary Arab life along with the lyrics to the songs.

Subject:
Arts and Humanities
Cultural Studies
Languages
Material Type:
Activity/Lab
Interactive
Reading
Provider:
Mumkin
Date Added:
04/03/2020
Reading the Blueprint of Life:  Transcription, Stem Cells and Differentiation, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course, we will address how transcriptional regulators both prohibit and drive differentiation during the course of development. How does a stem cell know when to remain a stem cell and when to become a specific cell type? Are there global differences in the way the genome is read in multipotent and terminally differentiated cells? We will explore how stem cell pluripotency is preserved, how master regulators of cell-fate decisions execute developmental programs, and how chromatin regulators control undifferentiated versus differentiated states. Additionally, we will discuss how aberrant regulation of transcriptional regulators produces disorders such as developmental defects and cancer. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Guenther, Matthew
Date Added:
01/01/2006