Updating search results...

Physics

159 affiliated resources

Search Resources

View
Selected filters:
Cold War Science, Fall 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This seminar examines the history and legacy of the Cold War on American science. It explores scientist's new political roles after World War II, ranging from elite policy makers in the nuclear age to victims of domestic anti Communism. It also examines the changing institutions in which the physical sciences and social sciences were conducted during the postwar decades, investigating possible epistemic effects on forms of knowledge. The subject closes by considering the place of science in the post-Cold War era."

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kaiser, David
Date Added:
01/01/2008
College Physics
Unrestricted Use
CC BY
Rating
0.0 stars

This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
Kim Dirks
Manjula Sharma
Paul Peter Urone
Roger Hinrichs
Date Added:
01/23/2012
College Physics for AP Courses
Unrestricted Use
CC BY
Rating
0.0 stars

College Physics for AP Courses is designed to engage students in their exploration of physics and help them to relate what they learn in the classroom to their lives and to apply these concepts to the Advanced Placement test. Physics underlies much of what is happening today in other sciences and in technology, therefore the book includes interesting facts and ideas that go beyond the scope of the AP course to further student understanding. The AP Connection in each chapter directs students to the material they should focus on for the AP® exam, and what content — although interesting — is not necessarily part of the AP curriculum.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
David Anderson
Douglas Ingram
Gregg Wolfe
Irna Lyublinskaya
John Stoke
Julie Kretchman
Liza Pujji
Nathan Czuba
Sudhi Oberoi
Date Added:
04/29/2015
Compressible Flow, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Harris, Wesley Leroy
Date Added:
01/01/2003
Conceptual Physics
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

For a semester-length course, all seven chapters can be covered. For a shorter course, the book is designed so that chapters 1, 2, and 5 are the only ones that are required for continuity; any of the others can be included or omitted at the instructor’s discretion, with the only constraint being that chapter 6 requires chapter 4.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Light and Matter
Provider Set:
Light and Matter Books
Author:
Benjamin Crowell, Fullerton College
Date Added:
01/01/2006
Cosmology, Fall 2001
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Thermal backgrounds in space. Cosmological principle and its consequences: Newtonian cosmology and types of "universes"; survey of relativistic cosmology; horizons. Overview of evolution in cosmology; radiation and element synthesis; physical models of the "early stages." Formation of large-scale structure to variability of physical laws. First and last states. Some knowledge of relativity expected. 8.962 recommended though not required. This course provides an overview of astrophysical cosmology with emphasis on the Cosmic Microwave Background (CMB) radiation, galaxies and related phenomena at high redshift, and cosmic structure formation. Additional topics include cosmic inflation, nucleosynthesis and baryosynthesis, quasar (QSO) absorption lines, and gamma-ray bursts. Some background in general relativity is assumed.

Subject:
Astronomy
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Bertschinger, Edmund
Date Added:
01/01/2001
Direct Solar/Thermal to Electrical Energy Conversion Technologies, Fall 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This course introduces principles and technologies for converting heat into electricity via solid-state devices. The first part of the course discusses thermoelectric energy conversion and thermoelectric materials, thermionic energy conversion, and photovoltaics. The second part of the course discusses solar thermal technologies. Various solar heat collection systems will be reviewed, followed by an introduction to the principles of solar thermophotovoltaics and solar thermoelectrics. Spectral control techniques, which are critical for solar thermal systems, will be discussed."

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Chen, Gang
Date Added:
01/01/2009
Discover Physics
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Discover Physics is a conceptual physics textbook intended for students in a nonmathematical one-semester general-education course.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Light and Matter
Author:
Ben
Crowell
Date Added:
05/22/2019
Drinking Water Treatment 1 - Technology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course provides the technological background of treatment processes applied for production of drinking water. Treatment processes are demonstrated with laboratory experiments.

Subject:
Environmental Studies
Physical Science
Physics
Professional Studies
Material Type:
Full Course
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
J.C. van Dijk
Date Added:
03/05/2016
Dynamics and Control I, Fall 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class is an introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Topics include kinematics; force-momentum formulation for systems of particles and rigid bodies in planar motion; work-energy concepts; virtual displacements and virtual work; Lagrange's equations for systems of particles and rigid bodies in planar motion; linearization of equations of motion; linear stability analysis of mechanical systems; free and forced vibration of linear multi-degree of freedom models of mechanical systems; and matrix eigenvalue problems. The class includes an introduction to numerical methods and using MATLABĺ¨ to solve dynamics and vibrations problems.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Makris, Nicholas
Sarma, Sanjay
So, Peter
Date Added:
01/01/2007
The Early Universe, Fall 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Early Universe provides an introduction to modern cosmology. The first part of the course deals with the classical cosmology, and later part with modern particle physics and its recent impact on cosmology.

Subject:
Astronomy
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Alan Guth
Date Added:
01/01/2013
Einstein, Oppenheimer, Feynman: Physics in the 20th Century, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the role of physics and physicists during the 20th century, focusing on Einstein, Oppenheimer, and Feynman. Beyond just covering the scientific developments, institutional, cultural, and political contexts will also be examined.

Subject:
Arts and Humanities
Cultural Studies
History
Physical Science
Physics
World History
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kaiser, David
Date Added:
01/01/2011
Electrical, Optical, and Magnetic Properties of Materials, Fall 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This class discusses the origin of electrical, magnetic and optical properties of materials, with a focus on the acquisition of quantum mechanical tools. It begins with an analysis of the properties of materials, presentation of the postulates of quantum mechanics, and close examination of the hydrogen atom, simple molecules and bonds, and the behavior of electrons in solids and energy bands. Introducing the variation principle as a method for the calculation of wavefunctions, the course continues with investigation of how and why materials respond to different electrical, magnetic and electromagnetic fields and probes and study of the conductivity, dielectric function, and magnetic permeability in metals, semiconductors, and insulators. A survey of common devices such as transistors, magnetic storage media, optical fibers concludes the semester. Note: The Magnetics unit was taught by co-instructor David Paul; that material is not available at this time."

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Marzari, Nicola
Paul, David
Date Added:
01/01/2007
Electricity and Magnetism, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
John Belcher
Date Added:
05/17/2004
Electromagnetic Fields, Forces, and Motion, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

"This course examines electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Topics covered include: electromagnetic forces, force densities, and stress tensors, including magnetization and polarization; thermodynamics of electromagnetic fields, equations of motion, and energy conservation; applications to synchronous, induction, and commutator machines; sensors and transducers; microelectromechanical systems; propagation and stability of electromechanical waves; and charge transport phenomena. Acknowledgments The instructor would like to thank Thomas Larsen and Matthew Pegler for transcribing into LaTeX the homework problems, homework solutions, and exam solutions."

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Zahn, Markus
Date Added:
01/01/2009
Electromagnetic Fields and Energy, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

"Published in 1989 by Prentice-Hall, this book is a useful resource for educators and self-learners alike. The text is aimed at those who have seen Maxwell's equations in integral and differential form and who have been exposed to some integral theorems and differential operators. A hypertext version of this textbook can be found here. An accompanying set of video demonstrations is available below. These video demonstrations convey electromagnetism concepts. The demonstrations are related to topics covered in the textbook. They were prepared by Markus Zahn, James R. Melcher, and Manuel L. Silva and were produced by the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology. The purpose of these demonstrations is to make mathematical analysis of electromagnetism take on physical meaning. Based on relatively simple configurations and arrangements of equipment, they make a direct connection between what has been analytically derived and what is observed. They permit the student to observe physically what has been described symbolically. Often presented with a plot of theoretical predictions that are compared to measured data, these demonstrations give the opportunity to test the range of validity of the theory and present a quantitative approach to dealing with the physical world. The short form of these videos contains the demonstrations only. The long form also presents theory, diagrams, and calculations in support of the demonstrations. These videos are used in the courses 6.013J/ESD.013J and 6.641. Technical Requirements:Special software is required to use some of the files in this course: .mp4, .rm."

Subject:
Applied Science
Computer Science
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Silva, Manuel L.
Zahn, Markus
Date Added:
01/01/2008
Electromagnetic Theory, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Basic principles of electromagnetism: experimental basis, electrostatics, magnetic fields of steady currents, motional e.m.f. and electromagnetic induction, Maxwell's equations, propagation and radiation of electromagnetic waves, electric and magnetic properties of matter, and conservation laws. This is a graduate level subject which uses appropriate mathematics but whose emphasis is on physical phenomena and principles.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Levitov, Leonid
Date Added:
01/01/2004
Electromagnetism II, Fall 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Survey of basic electromagnetic phenomena: electrostatics, magnetostatics; electromagnetic properties of matter. Time-dependent electromagnetic fields and Maxwell's equations. Electromagnetic waves, emission, absorption, and scattering of radiation. Relativistic electrodynamics and mechanics.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Alan Guth
Min Chen
Date Added:
01/01/2012
Engineering Physics I (PHYS 221)
Unrestricted Use
CC BY
Rating
0.0 stars

This course covers the major topics of mechanics, including momentum and energy conservation, kinematics, Newton‰ŰŞs laws and equilibrium. The major emphasis is to develop critical analysis, problem solving and scientific reasoning skills by considering numerous different systems and interactions, solving problems and discussion. It uses a systematic approach based on modeling systems by application of basic physics principles, making assumptions, utilizing multiple representations (not just mathematical) in order to become proficient at problem solving. Lab work is required and is designed to help students develop a questioning approach to physical situations, distinguishing the significant behaviors from the less significant behaviors of a system under study.Login: guest_oclPassword: ocl

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Full Course
Homework/Assignment
Lesson Plan
Reading
Simulation
Syllabus
Provider:
Washington State Board for Community & Technical Colleges
Provider Set:
Open Course Library
Date Added:
10/31/2011
Engineering of Nuclear Systems, Fall 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, thermodynamics, fluid flow and heat transfer. This course includes the following: Reactor designs, Thermal analysis of nuclear fuel, Reactor coolant flow and heat transfer, Power conversion cycles, Nuclear safety and Reactor dynamic behavior.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Buongiorno, Jacopo
Date Added:
01/01/2010